import torch
import numpy as np
'参数初始化'
params = torch.nn.Conv2d(1,1,3,1)# x = list(params.parameters())[0].data
x =list(params.weight)[0].data
print("nn.Conv2d:\n",x,x.mean(),x.std(),"\n")
data = torch.randn([1,1,3,3],dtype=torch.float32)print("torch.randn:\n",data,data.mean(),data.std(),"\n")
x = torch.nn.init.constant_(data,0.5)#初始化为指定常数print("init.constant_:\n",x,x.mean(),x.std(),"\n")
x = torch.nn.init.normal_(data, mean=0, std=0.002)#初始化为指定分布的参数print("init.normal_:\n",x,x.mean(),x.std(),"\n")
x = torch.nn.init.uniform_(data,0,1)#初始化为0到1之间的参数print("init.uniform_:\n",x,x.mean(),x.std(),"\n")# "k = \frac{1}{C_\text{in} * \prod_{i=0}^{1}\text{kernel\_size}[i]}"# "\mathcal{U}(-\sqrt{k}, \sqrt{k})"# x = torch.nn.init.uniform_(data, -k, k)#初始化为-k到k之间的参数,pytorch中卷积核的初始化方法# print("init.uniform_:\n",x,x.mean(),x.std(),"\n")
x = torch.nn.init.xavier_normal_(data)print("init.xavier_normal_:\n",x,x.mean(),x.std(),"\n")
x = torch.nn.init.xavier_uniform_(data)print("init.xavier_uniform_:\n",x,x.mean(),x.std(),"\n")
x = torch.nn.init.kaiming_normal_(data)#凯明初始化方法print("init.kaiming_normal_:\n",x,x.mean(),x.std(),"\n")
x = torch.nn.init.kaiming_uniform_(data)#凯明初始化方法print("init.kaiming_uniform_:\n",x,x.mean(),x.std(),"\n")
noise_d = torch.normal(0,0.002,(self.batch_size,128,1,1))