题意:
给出n个整数a,a2,a3...ana_,a_2,a_3...a_na,a2,a3...an,1≤i≤n1≤i≤n1≤i≤n,i−n≤i−1i-n≤i-1i−n≤i−1,现在需要你找出任意一个子序列使这个子序列的和为0
题解:
首先注意到i−n≤ai≤i−1i-n≤a_i≤i-1i−n≤ai≤i−1,那么1≤i−ai≤n1≤i-a_i≤n1≤i−ai≤n
考虑构造一个点数为n的有向图,建iii和i−a[i]i-a[i]i−a[i],1≤i≤n1≤i≤n1≤i≤n的有向边2
那么只要能找到这个有向图的其中一个环即可
因为:
i1−ai1=i2i_1-a_{i_1} = i_2i1−ai1=i2
i2−ai2=i3i_2-a_{i_2} = i_3i2−ai2=i3
…
in−ain=i1i_n-a_{i_n} = i_1in−ain=i1
两边相加即可得到∑j=1kaij=0\sum_{j=1}^{k}a_{i_j} = 0∑j=1kaij=0
所以我们只需要dfs判环就ok啦
AC代码:
#pragma GCC optimize(2)
#include<bits/stdc++.h>
#include<ext/rope>
using namespace std;
using namespace __gnu_cxx;
#define LL long long
#define pii pair<int,int>
#define mp(a,b) make_pair(a,b)
const int MAXN = 1e6+10;
const int MOD = 1e9+7;
const int INF = 0x3f3f3f3f;
int a[MAXN],head[MAXN],tot,ans; bool vis[MAXN];
struct node{ int v,nxt; }edge[MAXN<<1];
inline void add(int u,int v){
edge[++tot].v=v; edge[tot].nxt=head[u]; head[u]=tot;
}
void dfs(int u){
vis[u]=1;
for(int i=head[u];i;i=edge[i].nxt){
int v = edge[i].v;
if(vis[v]){ ans = v; return; }
dfs(v);
}
}
signed main(){
#ifndef ONLINE_JUDGE
freopen("C:\\Users\\Administrator\\Desktop\\in.txt","r",stdin);
#endif // ONLINE_JUDGE
int T; scanf("%d",&T);
while(T--){
int n; scanf("%d",&n); tot=0;
for(int i=1;i<=n;i++) vis[i]=0,head[i]=0;
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=1;i<=n;i++) add(i,i-a[i]);
dfs(1); vector<int> res;
int u=ans-a[ans]; res.push_back(ans);
while(u!=ans){
res.push_back(u);
u = u-a[u];
}
printf("%d\n",res.size());
for(int i=0;i<res.size();i++) printf("%d ",res[i]);
puts("");
}
return 0;
}