nn.BatchNorm1d()用法介绍

本文介绍了PyTorch中的nn.BatchNorm1d模块,主要用于一维数据的批量归一化。nn.BatchNorm1d接受参数num_features表示特征维度,eps用于数值稳定性,momentum为移动平均动量。该模块可在输入为(N,C)或(N,C,L)时对C维进行归一化。通过示例展示了如何使用nn.BatchNorm1d进行数据归一化。
部署运行你感兴趣的模型镜像

nn.BatchNorm1d()用法介绍

torch.nn.BatchNorm1d(num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  • num_features – 特征维度
  • eps – 为数值稳定性而加到分母上的值。
  • momentum – 移动平均的动量值。
  • affine –一个布尔值,当设置为真时,此模块具有可学习的仿射参数。

这里其他几个参数都不重要,只需要看num_features就可以了。num_features就是你需要归一化的那一维的维度

nn.BatchNorm1d本身不是给定输入矩阵,输出归一化结果的函数,而是定义了一个方法,再用这个方法去做归一化。

BN = nn.BatchNorm1d(100)
input = torch.randn(20, 100)
output = m(input)

我们首先定义了一个归一化的函数BN,需要归一化的维度为100,其他参数为默认。然后随机初始化一个20×100的矩阵input,再用BN对这个矩阵归一化。
函数的input可以是二维或者三维。当input的维度为(N, C)时,BN将对C维归一化;当input的维度为(N, C, L) 时,归一化的维度同样为C维。

您可能感兴趣的与本文相关的镜像

PyTorch 2.8

PyTorch 2.8

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值