hdu1358——经典循环节问题

本文探讨了字符串前缀的周期性问题,通过分析每个前缀是否可以视为某个基本字符串的重复,介绍了如何判断和计算字符串的循环节。利用KMP算法预处理next数组,有效地解决了这一经典问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1358

For each prefix of a given string S with N characters (each character has an ASCII code between 97 and 126, inclusive), we want to know whether the prefix is a periodic string. That is, for each i (2 <= i <= N) we want to know the largest K > 1 (if there is one) such that the prefix of S with length i can be written as A K , that is A concatenated K times, for some string A. Of course, we also want to know the period K.

Input

The input file consists of several test cases. Each test case consists of two lines. The first one contains N (2 <= N <= 1 000 000) – the size of the string S. The second line contains the string S. The input file ends with a line, having the number zero on it.

Output

For each test case, output “Test case #” and the consecutive test case number on a single line; then, for each prefix with length i that has a period K > 1, output the prefix size i and the period K separated by a single space; the prefix sizes must be in increasing order. Print a blank line after each test case.

Sample Input

3
aaa
12
aabaabaabaab
0

Sample Output

Test case #1
2 2
3 3

Test case #2
2 2
6 2
9 3
12 4

题目翻译:

给出一个字符串s,问在[0, i]区间是否有完整的循环节,若有,输出i并输出循环次数

 

经典的循环节问题,求循环次数并且判断是否存在循环节。

关于循环节的问题可以参考我的这篇文章:https://blog.youkuaiyun.com/qq_43472263/article/details/98759664

#include <iostream>
using namespace std;
const int maxn=1e6+7;
int n;
char str[maxn];
int nxt[maxn];
void getnext(){
	int j=0,k=-1;
	nxt[0]=-1;
	while(j<n){
		if(k==-1||str[j]==str[k]){
			j++;
			k++;
			nxt[j]=k;
		}
		else k=nxt[k];
	}
}
int main(int argc, char** argv) {
	ios_base::sync_with_stdio(0),cin.tie(0),cout.tie(0);
	int ncase=1;
	while(cin>>n&&n){
		scanf("%s",str);
		getnext();
		printf("Test case #%d\n",ncase++);
		for(int i = 1;i<=n;++i)
			if((i)%(i-nxt[i])==0&&nxt[i]!=0)
				printf("%d %d\n",i,i/(i-nxt[i])); 
		printf("\n");
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值