知识准备:
(logx)′=1/x (logx)^\prime = 1/x (logx)′=1/x
Power rule:
ddx xn=limh→0 (x+h)n−xnh \frac{d}{dx}\ x^n = \lim_{h→0}\ \frac{(x+h)^n - x^n}{h}\ dxd xn=h→0lim h(x+h)n−xn
ddx xn=limh→0 xn+nxn−1h+hhh−xnh \frac{d}{dx}\ x^n = \lim_{h→0}\ \frac{x^n + nx^{n-1}h + hhh - x^n}{h}\ dxd xn=h→0lim hxn+nxn−1h+hhh−xn
ddx xn=limh→0 nxn−1h−hhhh \frac{d}{dx}\ x^n= \lim_{h→0}\ \frac{nx^{n-1}h - hhh}{h}\ dxd xn=h→0lim hnxn−1h−hhh
ddx xn=nxn−1 \frac{d}{dx}\ x^n= nx^{n-1} dxd xn=nxn−1
Product rule:
f(x)>0g(x)>0 f(x)>0 \quad g(x)>0 f(x)>0g(x)>0
log(f(x)g(x))=log(f(x))+log(g(x)) log(f(x)g(x)) = log(f(x)) + log(g(x)) log(f(x)g(x))=log(f(x))+log(g(x))
1f(x)g(x) ddx (f(x)g(x))=1f(x)f′(x) +1g(x) g′(x) \frac{1}{f(x)g(x)}\ \frac{d}{dx}\ (f(x)g(x)) = \frac{1}{f(x)} f'(x)\ + \frac{1}{g(x)}\ g'(x) f(x)g(x)1 dxd (f(x)
逻辑回归求导证明
最新推荐文章于 2025-03-09 16:39:56 发布