一文搞定Pytorch保存和加载模型、pt转换ONNX

目录

一、初探卷积神经网络

二、torch保存模型

2.1 torch保存完整模型(包括网络结构和权重参数)

2.2 torch仅仅保存权重

三、torch加载模型

三、torch pt文件转onnx

3.1 加载完整pt文件并转换onnx

3.2 加载权重pt文件并转换


一、初探卷积神经网络

定义一个简单的卷积神经网络:

import torch
import torch.nn as nn
import torch.nn.functional as F

class ConvTestNet(nn.Module):
    def __init__(self):
        super(CivilNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(256, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
        self.gemfield = "gemfield.org"
        self.syszux = torch.zeros([1,1])

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 256)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# 初始化模型
model = ConvTestNet()
print("model type = ",type(model))
print(model)
print(dir(model))
for name, param in model.named_parameters():
        if 'weight' in name or 'bias' in name:
            print(f"{name}: {param.data.shape}")

输出结果:

# model类型
model type =  <class '__main__.ConvTestNet'>
# model的网络结构
ConvTestNet(
  (conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
  (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
  (fc1): Linear(in_features=400, out_features=120, bias=True)
  (fc2): Linear(in_features=120, out_features=84, bias=True)
  (fc3): Linear(in_features=84, out_features=10, bias=True)
)
# model 所有的属性
['T_destination', '__annotations__', '__call__', '__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattr__', '__getattribute__', '__getstate__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__setstate__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', '_apply', '_backward_hooks', '_backward_pre_hooks', '_buffers', '_call_impl', '_compiled_call_impl', '_forward_hooks', '_forward_hooks_always_called', '_forward_hooks_with_kwargs', '_forward_pre_hooks', '_forward_pre_hooks_with_kwargs', '_get_backward_hooks', '_get_backward_pre_hooks', '_get_name', '_is_full_backward_hook', '_load_from_state_dict', '_load_state_dict_post_hooks', '_load_state_dict_pre_hooks', '_maybe_warn_non_full_backward_hook', '_modules', '_named_members', '_non_persistent_buffers_set', '_parameters', '_register_load_state_dict_pre_hook', '_register_state_dict_hook', '_replicate_for_data_parallel', '_save_to_state_dict', '_slow_forward', '_sta
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值