Count
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 160 Accepted Submission(s): 71
Problem Description
Farmer John有n头奶牛.某天奶牛想要数一数有多少头奶牛,以一种特殊的方式:第一头奶牛为1号,第二头奶牛为2号,第三头奶牛之后,假如当前奶牛是第n头,那么他的编号就是2倍的第n-2头奶牛的编号加上第n-1头奶牛的编号再加上自己当前的n的三次方为自己的编号.现在Farmer John想知道,第n头奶牛的编号是多少,估计答案会很大,你只要输出答案对于123456789取模.
Input
第一行输入一个T,表示有T组样例
接下来T行,每行有一个正整数n,表示有n头奶牛 (n>=3)
其中,T=10^4,n<=10^18
Output
共T行,每行一个正整数表示所求的答案
Sample Input
5
3
6
9
12
15
Sample Output
31
700
7486
64651
527023
矩阵快速幂
加速矩阵见代码
板子见ZSC大佬的链接附上https://blog.youkuaiyun.com/ZscDst/article/details/79952242
//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int MOD = 123456789;
typedef long long LL;
struct Matrix
{
int r, c;
LL m[10][10];
Matrix () {};
Matrix (int r, int c)
{
this->r = r; this->c = c;
memset(m, 0, sizeof(m));
}
Matrix operator + (Matrix b) const // a和b均为r * c的矩阵
{
Matrix ans(r, c);
for (int i = 0; i < r; i++)
{
for (int j = 0; j < c; j++)
{
ans.m[i][j] = (m[i][j] + b.m[i][j]) % MOD;
}
}
return ans;
}
Matrix operator * (Matrix b) const // 要求a.c == b.r
{
Matrix ans(r, b.c);
for (int i = 0; i < ans.r; i++)
{
for (int j = 0; j < ans.c; j++)
{
for (int k = 0; k < c; k++)
{
ans.m[i][j] += m[i][k] * b.m[k][j] % MOD;
ans.m[i][j] %= MOD;
}
}
}
return ans;
}
};
Matrix qpow(Matrix a, LL b) // a必须是方阵(即r==c)
{
Matrix res(a.r, a.c);
for (int i = 0; i < res.r; i++) res.m[i][i] = 1;
while (b)
{
if (b & 1) res = res * a;
a = a * a;
b >>= 1;
}
return res;
}
int main()
{
int T ;
cin >> T ;
while (T--)
{
LL n ;
cin >> n ;
Matrix B(6, 6), A(6, 1);
B.m[0][0] = 1; B.m[0][1] = 2;B.m[0][2] = 1; B.m[0][3] = 0;B.m[0][4] = 0; B.m[0][5] = 0;
B.m[1][0] = 1; B.m[1][1] = 0;B.m[1][2] = 0; B.m[1][3] = 0;B.m[1][4] = 0; B.m[1][5] = 0;
B.m[2][0] = 0; B.m[2][1] = 0;B.m[2][2] = 1; B.m[2][3] = 3;B.m[2][4] = 3; B.m[2][5] = 1;
B.m[3][0] = 0; B.m[3][1] = 0;B.m[3][2] = 0; B.m[3][3] = 1;B.m[3][4] = 2; B.m[3][5] = 1;
B.m[4][0] = 0; B.m[4][1] = 0;B.m[4][2] = 0; B.m[4][3] = 0;B.m[4][4] = 1; B.m[4][5] = 1;
B.m[5][0] = 0; B.m[5][1] = 0;B.m[5][2] = 0; B.m[5][3] = 0;B.m[5][4] = 0; B.m[5][5] = 1;
A.m[0][0] = 2;
A.m[1][0] = 1;
A.m[2][0] = 27;
A.m[3][0] = 9;
A.m[4][0] = 3;
A.m[5][0] = 1;
A = qpow(B, n - 2) * A ;
cout << A.m[0][0] << endl ;
}
return 0;
}
第一次写矩阵快速幂 哈哈哈