HBase过滤器

本文详细介绍了HBase中的各种过滤器,包括RowFilter、FamilyFilter、QualifierFilter和ValueFilter,以及专用的SingleColumnValueFilter和SingleColumnValueExcludeFilter。通过实例演示了如何使用比较运算符和定制比较器进行精确的数据筛选,以及如何组合多个过滤器进行复杂查询。

HBase过滤器

作用
  • 过滤器的作用是在服务端判断数据是否满足条件,然后只将满足条件的数据返回给客户端
  • 过滤器的类型很多,但是可以分为两大类:
    • 比较过滤器:可应用于rowkey、列簇、列、列值过滤器
    • 专用过滤器:只能适用于特定的过滤器
比较过滤器
比较运算符
  • LESS <

  • LESS_OR_EQUAL <=

  • EQUAL =

  • NOT_EQUAL <>

  • GREATER_OR_EQUAL >=

  • GREATER >

  • NO_OP 排除所有

常见的六大比较过滤器
BinaryComparator

按字节索引顺序比较指定字节数组,采用Bytes.compareTo(byte[])

BinaryPrefixComparator

通BinaryComparator,只是比较左端前缀的数据是否相同

NullComparator

判断给定的是否为空

BitComparator

按位比较

RegexStringComparator

提供一个正则的比较器,仅支持 EQUAL 和非EQUAL

SubstringComparator

判断提供的子串是否出现在中

示例代码
rowKey过滤器:RowFilter

通过RowFilter与BinaryComparator过滤比rowKey 1500100010小的所有值出来

    @Test
    // 通过RowFilter过滤比rowKey 1500100010 小的所有值出来
    public void BinaryComparatorFilter() throws IOException {
        Table students = conn.getTable(TableName.valueOf("students"));
        BinaryComparator binaryComparator = new BinaryComparator(Bytes.toBytes(1500100010));
        RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.LESS, binaryComparator);
        Scan scan = new Scan();
        scan.setFilter(rowFilter);
        ResultScanner scanner = students.getScanner(scan);
        Result rs = scanner.next();
        while (rs != null) {
            String id = Bytes.toString(rs.getRow());
            String name = Bytes.toString(rs.getValue("info".getBytes(), "name".getBytes()));
            int age = Bytes.toInt(rs.getValue("info".getBytes(), "age".getBytes()));
            String gender = Bytes.toString(rs.getValue("info".getBytes(), "gender".getBytes()));
            String clazz = Bytes.toString(rs.getValue("info".getBytes(), "clazz".getBytes()));

            System.out.println(id + "\t" + name + "\t" + age + "\t" + gender + "\t" + clazz + "\t");

            rs = scanner.next();
        }

    }
列簇过滤器:FamilyFilter

通过FamilyFilter与SubstringComparator查询列簇名包含in的所有列簇下面的数据

    @Test
    // 通过FamilyFilter查询列簇名包含in的所有列簇下面的数据
    public void SubstringComparatorFilter() throws IOException {
        Table students = conn.getTable(TableName.valueOf("students"));
        SubstringComparator substringComparator = new SubstringComparator("in");
        FamilyFilter familyFilter = new FamilyFilter(CompareFilter.CompareOp.EQUAL, substringComparator);
        Scan scan = new Scan();
        scan.setFilter(familyFilter);
        ResultScanner scanner = students.getScanner(scan);
        Result rs = scanner.next();
        while (rs != null) {
            String id = Bytes.toString(rs.getRow());
            String name = Bytes.toString(rs.getValue("info".getBytes(), "name".getBytes()));
            int age = Bytes.toInt(rs.getValue("info".getBytes(), "age".getBytes()));
            String gender = Bytes.toString(rs.getValue("info".getBytes(), "gender".getBytes()));
            String clazz = Bytes.toString(rs.getValue("info".getBytes(), "clazz".getBytes()));

            System.out.println(id + "\t" + name + "\t" + age + "\t" + gender + "\t" + clazz + "\t");

            rs = scanner.next();
        }

    }

通过FamilyFilter与 BinaryPrefixComparator 过滤出列簇以info开头的列簇下的所有数据

// 通过FamilyFilter与 BinaryPrefixComparator 过滤出列簇以info开头的所有列簇下的所有数据
    @Test
    public void BinaryPrefixComparatorFilter() throws IOException {
        Table students = conn.getTable(TableName.valueOf("students"));

        // 二进制前缀比较器
        BinaryPrefixComparator binaryPrefixComparator = new BinaryPrefixComparator("info".getBytes());
        // FamilyFilter 作用于列簇的过滤器
        FamilyFilter familyFilter = new FamilyFilter(CompareFilter.CompareOp.EQUAL, binaryPrefixComparator);

        Scan scan = new Scan();

        scan.withStartRow("1500100001".getBytes());
        scan.withStopRow("1500100011".getBytes());
        // 通过setFilter方法设置过滤器
        scan.setFilter(familyFilter);

        ResultScanner scanner = students.getScanner(scan);

        printRS(scanner);

    }
列过滤器:QualifierFilter

通过QualifierFilter与SubstringComparator查询列名包含in的列的值

    public void printRS(ResultScanner scanner) throws IOException {
        for (Result rs : scanner) {
            String rowkey = Bytes.toString(rs.getRow());
            System.out.println("当前行的rowkey为:" + rowkey);
            for (Cell cell : rs.listCells()) {
                String family = Bytes.toString(CellUtil.cloneFamily(cell));
                String qualifier = Bytes.toString(CellUtil.cloneQualifier(cell));
                byte[] bytes = CellUtil.cloneValue(cell);
                if ("age".equals(qualifier)) {
                    int value = Bytes.toInt(bytes);
                    System.out.println(family + ":" + qualifier + "的值为" + value);
                } else {
                    String value = Bytes.toString(bytes);
                    System.out.println(family + ":" + qualifier + "的值为" + value);
                }
            }
        }
    }

    @Test
    // 通过FamilyFilter查询列簇名包含in的所有列簇下面的数据
    public void SubstringComparatorFilter() throws IOException {
        Table students = conn.getTable(TableName.valueOf("students"));
        SubstringComparator substringComparator = new SubstringComparator("in");
        FamilyFilter familyFilter = new FamilyFilter(CompareFilter.CompareOp.EQUAL, substringComparator);
        Scan scan = new Scan();
        scan.setFilter(familyFilter);
        ResultScanner scanner = students.getScanner(scan);
        Result rs = scanner.next();
        while (rs != null) {
            String id = Bytes.toString(rs.getRow());
            String name = Bytes.toString(rs.getValue("info".getBytes(), "name".getBytes()));
            int age = Bytes.toInt(rs.getValue("info".getBytes(), "age".getBytes()));
            String gender = Bytes.toString(rs.getValue("info".getBytes(), "gender".getBytes()));
            String clazz = Bytes.toString(rs.getValue("info".getBytes(), "clazz".getBytes()));

            System.out.println(id + "\t" + name + "\t" + age + "\t" + gender + "\t" + clazz + "\t");

            rs = scanner.next();
        }

    }

过滤出 列的名字 中 包含 “am” 所有的列 及列的值

    // 过滤出 列的名字 中 包含 "am" 所有的列 及列的值
    @Test
    public void SubstringComparatorQualifierFilter() throws IOException {
        Table students = conn.getTable(TableName.valueOf("students"));

        SubstringComparator substringComparator = new SubstringComparator("am");
        // 作用在列名上的过滤器
        QualifierFilter qualifierFilter = new QualifierFilter(CompareFilter.CompareOp.EQUAL, substringComparator);
        Scan scan = new Scan();

        scan.withStartRow("1500100001".getBytes());
        scan.withStopRow("1500100011".getBytes());
        // 通过setFilter方法设置过滤器
        scan.setFilter(qualifierFilter);

        ResultScanner scanner = students.getScanner(scan);

        printRS(scanner);

    }
列值过滤器:ValueFilter

通过ValueFilter与BinaryPrefixComparator过滤出所有的cell中值以 “张” 开头的学生

    @Test
    // 通过ValueFilter与BinaryPrefixComparator过滤出所有的cell中值以 "张" 开头的学生
    public void BinaryPrefixComparatorFilter() throws IOException {
        Table students = conn.getTable(TableName.valueOf("students"));
        BinaryPrefixComparator binaryPrefixComparator = new BinaryPrefixComparator("张".getBytes());
        ValueFilter valueFilter = new ValueFilter(CompareFilter.CompareOp.EQUAL, binaryPrefixComparator);
        Scan scan = new Scan();
        scan.setFilter(valueFilter);
        ResultScanner scanner = students.getScanner(scan);

        printRS(scanner);

    }

过滤出文科的学生,只会返回clazz列,其他列的数据不符合条件,不会返回

    // 过滤出文科的学生
    // 只会返回clazz列,其他列的数据不符合条件,不会返回
    @Test
    public void RegexStringComparatorFilter() throws IOException {
        Table students = conn.getTable(TableName.valueOf("students"));

        // 使用正则表达式比较器
        RegexStringComparator regexStringComparator = new RegexStringComparator("^文科.*");
        // ValueFilter 会返回符合条件的cell,并不会返回整条数据
        ValueFilter valueFilter = new ValueFilter(CompareFilter.CompareOp.EQUAL, regexStringComparator);

        Scan scan = new Scan();

        scan.withStartRow("1500100001".getBytes());
        scan.withStopRow("1500100011".getBytes());
        // 通过setFilter方法设置过滤器
        scan.setFilter(valueFilter);

        ResultScanner scanner = students.getScanner(scan);

        printRS(scanner);
    }

专用过滤器
单列值过滤器:SingleColumnValueFilter

SingleColumnValueFilter会返回满足条件的cell所在行的所有cell的值(即会返回一行数据)

通过SingleColumnValueFilter与查询文科班所有学生信息

    @Test
    // 通过SingleColumnValueFilter与查询文科班所有学生信息
    public void RegexStringComparatorFilter() throws IOException {
        Table students = conn.getTable(TableName.valueOf("students"));
        SingleColumnValueFilter singleColumnValueFilter = new SingleColumnValueFilter(
                "info".getBytes(),
                "clazz".getBytes(),
                CompareFilter.CompareOp.EQUAL,
                new RegexStringComparator("^文科.*")
        );

        Scan scan = new Scan();
        scan.setFilter(singleColumnValueFilter);
        ResultScanner scanner = students.getScanner(scan);

        Result rs = scanner.next();
        while (rs != null) {
            String id = Bytes.toString(rs.getRow());
            String name = Bytes.toString(rs.getValue("info".getBytes(), "name".getBytes()));
            int age = Bytes.toInt(rs.getValue("info".getBytes(), "age".getBytes()));
            String gender = Bytes.toString(rs.getValue("info".getBytes(), "gender".getBytes()));
            String clazz = Bytes.toString(rs.getValue("info".getBytes(), "clazz".getBytes()));

            System.out.println(id + "\t" + name + "\t" + age + "\t" + gender + "\t" + clazz + "\t");

            rs = scanner.next();
        }

    }
列值排除过滤器:SingleColumnValueExcludeFilter

与SingleColumnValueFilter相反,会排除掉指定的列,其他的列全部返回

通过SingleColumnValueExcludeFilter与BinaryComparator查询文科一班所有学生信息,最终不返回clazz列

    @Test
    // 通过SingleColumnValueExcludeFilter与BinaryComparator查询文科一班所有学生信息,最终不返回clazz列
    public void RegexStringComparatorExcludeFilter() throws IOException {
        Table students = conn.getTable(TableName.valueOf("students"));
        SingleColumnValueExcludeFilter singleColumnValueExcludeFilter = new SingleColumnValueExcludeFilter(
                "info".getBytes(),
                "clazz".getBytes(),
                CompareFilter.CompareOp.EQUAL,
                new BinaryComparator("文科一班".getBytes())
        );

        Scan scan = new Scan();
        scan.setFilter(singleColumnValueExcludeFilter);
        ResultScanner scanner = students.getScanner(scan);

        Result rs = scanner.next();
        while (rs != null) {
            String id = Bytes.toString(rs.getRow());
            String name = Bytes.toString(rs.getValue("info".getBytes(), "name".getBytes()));
            int age = Bytes.toInt(rs.getValue("info".getBytes(), "age".getBytes()));
            String gender = Bytes.toString(rs.getValue("info".getBytes(), "gender".getBytes()));
            // clazz列为空
            String clazz = Bytes.toString(rs.getValue("info".getBytes(), "clazz".getBytes()));

            System.out.println(id + "\t" + name + "\t" + age + "\t" + gender + "\t" + clazz + "\t");

            rs = scanner.next();
        }

    }
rowkey前缀过滤器:PrefixFilter

通过PrefixFilter查询以150010008开头的所有前缀的rowkey

    @Test
    // 通过PrefixFilter查询以150010008开头的所有前缀的rowkey
    public void PrefixFilterFilter() throws IOException {
        Table students = conn.getTable(TableName.valueOf("students"));
        PrefixFilter prefixFilter = new PrefixFilter("150010008".getBytes());
        Scan scan = new Scan();
        scan.setFilter(prefixFilter);
        ResultScanner scanner = students.getScanner(scan);
        Result rs = scanner.next();
        while (rs != null) {
            String id = Bytes.toString(rs.getRow());
            String name = Bytes.toString(rs.getValue("info".getBytes(), "name".getBytes()));
            int age = Bytes.toInt(rs.getValue("info".getBytes(), "age".getBytes()));
            String gender = Bytes.toString(rs.getValue("info".getBytes(), "gender".getBytes()));
            // clazz列为空
            String clazz = Bytes.toString(rs.getValue("info".getBytes(), "clazz".getBytes()));

            System.out.println(id + "\t" + name + "\t" + age + "\t" + gender + "\t" + clazz + "\t");

            rs = scanner.next();
        }
    }
分页过滤器PageFilter

通过PageFilter查询第三页的数据,每页10条

使用PageFilter分页效率比较低,每次都需要扫描前面的数据,直到扫描到所需要查的数据

可设计一个合理的rowkey来实现分页需求

    @Test
    // 通过PageFilter查询第三页的数据,每页10条
    public void PageFilter() throws IOException {
        Table students = conn.getTable(TableName.valueOf("students"));
        int PageNum = 3;
        int PageSize = 10;
        Scan scan = new Scan();
        if (PageNum == 1) {
            scan.withStartRow("".getBytes());
            //使用分页过滤器,实现数据的分页
            PageFilter pageFilter = new PageFilter(PageSize);
            scan.setFilter(pageFilter);
            ResultScanner scanner = students.getScanner(scan);
            printRS(scanner);
        } else {
            String current_page_start_rows = "";
            int scanDatas = (PageNum - 1) * PageSize + 1;
            PageFilter pageFilter = new PageFilter(scanDatas);
            scan.setFilter(pageFilter);
            ResultScanner scanner = students.getScanner(scan);
            for (Result rs : scanner) {
                current_page_start_rows = Bytes.toString(rs.getRow());
            }
            scan.withStartRow(current_page_start_rows.getBytes());
            PageFilter pageFilter1 = new PageFilter(PageSize);
            scan.setFilter(pageFilter1);
            ResultScanner scanner1 = students.getScanner(scan);
            printRS(scanner1);

        }

    }

通过合理的设置rowkey来实现分页功能

    @Test
    // 通过合理的设置rowkey来实现分页功能,提高效率
    public void PageFilterTest2() throws IOException {
        Table students = conn.getTable(TableName.valueOf("students"));
        int PageSize = 10;
        int PageNum = 3;

        int baseId = 1500100000;
        int start_row = baseId + (PageNum - 1) * PageSize + 1;
        int end_row = start_row + PageSize;
        Scan scan = new Scan();
        scan.withStartRow(String.valueOf(start_row).getBytes());
        scan.withStopRow(String.valueOf(end_row).getBytes());

        ResultScanner scanner = students.getScanner(scan);

        printRS(scanner);


    }
多过滤器综合查询

查询文科班中的学生中学号以150010008开头并且年龄小于23的学生信息

    @Test
    // 查询文科班中的学生中学号以150010008开头并且年龄小于23的学生信息
    public void FilterListFilter() throws IOException {
        Table students = conn.getTable(TableName.valueOf("students"));
        Scan scan = new Scan();
        SingleColumnValueFilter singleColumnValueFilter = new SingleColumnValueFilter(
                "info".getBytes()
                , "clazz".getBytes()
                , CompareFilter.CompareOp.EQUAL
                , new RegexStringComparator("^文科.*"));
        PrefixFilter prefixFilter = new PrefixFilter("150010008".getBytes());
        SingleColumnValueFilter singleColumnValueFilter1 = new SingleColumnValueFilter(
                "info".getBytes()
                , "age".getBytes()
                , CompareFilter.CompareOp.LESS
                , new BinaryComparator(Bytes.toBytes(23)));

        FilterList filterList = new FilterList();
        filterList.addFilter(singleColumnValueFilter);
        filterList.addFilter(prefixFilter);
        filterList.addFilter(singleColumnValueFilter1);
        scan.setFilter(filterList);
        ResultScanner scanner = students.getScanner(scan);
        printRS(scanner);

    }
<think>嗯,用户想了解HBase过滤器的使用方法和操作示例。首先,我需要回忆HBase过滤器的基本知识。记得HBase过滤器主要是在数据查询时用来筛选结果,类似于SQL中的WHERE子句。根据之前的引用内容,用户提到了FilterList、FamilyFilter、RowFilter等,可能还需要介绍其他常用的过滤器类型。 用户的问题主要集中在使用方法和示例,所以需要分步骤说明。首先可能需要介绍如何创建过滤器,然后如何组合使用,最后给出代码示例。需要注意的是,用户提供的引用中有提到FilterList支持AND和OR操作,这点很重要,应该详细说明。 另外,用户引用的资料里提到了HBase Filter Language,可能需要解释一下这种语言的配置方式。比如比较操作符如EQUAL、GREATER等,以及如何结合不同的比较器,如BinaryComparator和RegexStringComparator。 还要注意代码示例的正确性,确保语法正确,并且符合用户提供的引用中的示例结构。例如,引用[2]中的代码使用了FilterList,需要展示类似的Java代码,但可能需要简化以便用户理解。 可能需要涉及的内容包括:单个过滤器的使用(如RowFilter、ValueFilter)、列族和列过滤(FamilyFilter, QualifierFilter)、值过滤器(ValueFilter)、分页过滤器(PageFilter)以及组合过滤器(FilterList)。每个部分需要给出具体的示例,并解释参数的意义。 同时,用户可能关心实际应用中的常见问题,比如如何组合多个条件,如何处理不同过滤器的性能影响,或者如何优化过滤查询。不过根据用户的问题,主要焦点还是使用方法和示例,所以需要集中在这些方面。 还需要检查是否有遗漏的常用过滤器,比如SingleColumnValueFilter,这在引用中没有提到,但实际应用中很常见。需要确保覆盖主要的过滤器类型,以提供全面的帮助。 最后,生成相关问题时要围绕HBase过滤器的进阶使用、性能优化、比较器类型以及异常处理,这样用户如果有进一步的问题,可以参考这些问题继续探索。</think>### HBase 过滤器使用方法及操作教程 HBase 过滤器(Filter)是数据查询时用于筛选数据的核心工具,支持对行键、列族、列限定符和值进行条件过滤。以下为分步骤使用方法及示例: --- #### 一、基础过滤器类型与用法 1. **行键过滤器(RowFilter)** 根据行键进行过滤,支持多种比较运算符(如`EQUAL`、`GREATER`等)和比较器(如`BinaryComparator`)。 **示例**:筛选行键等于`row1`的数据 ```java Filter rowFilter = new RowFilter( CompareOperator.EQUAL, new BinaryComparator(Bytes.toBytes("row1")) ); ``` 2. **列族过滤器(FamilyFilter)** 按列族名称过滤,支持子字符串匹配(`substring`)或二进制比较(`binary`)[^3]。 **示例**:筛选列族名为`cf1`的数据 ```java Filter familyFilter = new FamilyFilter( CompareOperator.EQUAL, new BinaryComparator(Bytes.toBytes("cf1")) ); ``` 3. **列限定符过滤器(QualifierFilter)** 根据列名(Qualifier)过滤。 **示例**:筛选列名为`age`的列 ```java Filter qualifierFilter = new QualifierFilter( CompareOperator.EQUAL, new BinaryComparator(Bytes.toBytes("age")) ); ``` 4. **值过滤器(ValueFilter)** 根据单元格值过滤,支持正则表达式或前缀匹配。 **示例**:筛选值以`yifu`开头的数据[^2] ```java Filter valueFilter = new ValueFilter( CompareOperator.EQUAL, new BinaryPrefixComparator(Bytes.toBytes("yifu")) ); ``` --- #### 二、组合过滤器(FilterList) 支持通过逻辑运算符`AND`(`MUST_PASS_ALL`)或`OR`(`MUST_PASS_ONE`)组合多个过滤器。 **示例**:同时满足行键为`row1`且值以`yifu`开头 ```java List<Filter> filters = new ArrayList<>(); filters.add(rowFilter); filters.add(valueFilter); FilterList filterList = new FilterList( FilterList.Operator.MUST_PASS_ALL, filters ); ``` --- #### 三、分页过滤器(PageFilter) 限制返回结果数量,常用于分页查询。 **示例**:每次返回最多10行数据 ```java Filter pageFilter = new PageFilter(10); ``` --- #### 四、实际应用示例 ```java Scan scan = new Scan(); scan.setFilter(filterList); // 设置过滤器链 try (ResultScanner scanner = table.getScanner(scan)) { for (Result result : scanner) { // 处理结果 } } ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值