PTA_数据结构与算法题目集(中文)_7-11 关键活动 (30 分)

博客围绕一道算法题目展开,给出题目地址,对题目输出要求进行解析,包括输出所有关键活动,按任务开始交接点编号小者优先、起点编号相同时与输入任务顺序相反的规则输出。还给出参考代码及博主自己的代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 题目地址
  • 题目解析:值得注意的是题目的输出要求--1、输出所有的关键活动。2、关键活动输出的顺序规则是:任务开始的交接点编号小者优先,起点编号相同时,与输入时任务的顺序相反。(利用rbegin()和rend()非常方便!)
  • 参考代码
  • 我的代码:
#include<iostream>
#include<vector>
#include<queue>
using namespace std;

struct node
{
	int early;
	int last;
	int inDegree;
	int outDegree;
	vector<int>pre;
	vector<int>bak;
	node(int e, int l) :
		early(e), last(l), inDegree(0), outDegree(0) {}
};
const int MAX = 0x3f3f3f3f;

int main()
{
	int n, m;
	scanf("%d %d", &n, &m);

	vector<vector<int>>vv(n + 1, vector<int>(n + 1, -1));
	vector<node>nn(n + 1, node(0, MAX));
	for (int i = 0, a, b, c; i < m; i++)
	{
		scanf("%d %d %d", &a, &b, &c);
		vv[a][b] = c;
		nn[a].outDegree++, nn[a].bak.push_back(b);
		nn[b].inDegree++, nn[b].pre.push_back(a);
	}

	queue<int>qq;
	int count = 0;
	for (int i = 1; i <= n; i++)
		if (nn[i].inDegree == 0)
			qq.push(i), count++;
	while (qq.size())
	{
		int t = qq.front(); qq.pop();

		for (auto it = nn[t].bak.begin(); it != nn[t].bak.end(); it++)
		{
			if (nn[t].early + vv[t][*it] > nn[*it].early)
				nn[*it].early = nn[t].early + vv[t][*it];
			if ((--nn[*it].inDegree) == 0)
				qq.push(*it), count++;
		}
	}
	if (count != n)
	{
		printf("%d", 0);
		return 0;
	}

	int max = 0;
	for (int i = 1; i <= n; i++)
		if (nn[i].early > max)
			max = nn[i].early;
	printf("%d\n", max);
	for (int i = 1; i <= n; i++)
		if (nn[i].outDegree == 0)
			nn[i].last = max, qq.push(i);
	while (qq.size())
	{
		int t = qq.front(); qq.pop();

		for (auto it = nn[t].pre.begin(); it != nn[t].pre.end(); it++)
		{
			if (nn[t].last - vv[*it][t] < nn[*it].last)
				nn[*it].last = nn[t].last - vv[*it][t];
			if ((--nn[*it].outDegree) == 0)
				qq.push(*it);
		}
	}

	for (int i = 1; i <= n; i++)
		if (nn[i].early == nn[i].last)
			for (auto it = nn[i].bak.rbegin(); it != nn[i].bak.rend(); it++)
				if (nn[*it].last - vv[i][*it] == nn[i].last)
					printf("%d->%d\n", i, *it);

	return 0;
}

### PTA 数据结构算法 题目 7-51 解析 #### 题目概述 题目编号为7-51的数据结构算法练习题通常涉及较为复杂的逻辑运算以及特定的数据处理方法。这类题目旨在考察学生对于高级数据结构的理解程度及其应用能力。 #### 主要知识点覆盖 该类题目往往聚焦于但不限于以下几个方面: - **图论**:特别是关于连通性和最优化路径的选择问题[^1]。 - **动态规划**:解决具有重叠子问题特性的计算难题,提高效率的同时减少冗余计算。 - **贪心算法**:针对某些可以逐步构建最优解的情况适用此策略来简化求解过程。 #### 示例解答思路(假设) 考虑到具体题目细节未给出,这里提供一种基于上述领域内常见模式的通用解决方案框架: 当面对一个涉及到多个节点间关系的问题时,可以通过建立加权无向图模型来进行析。利用邻接矩阵或者边列表表示法存储这些连接信息,并采用Prim或Kruskal算法寻找最小生成树(MST)。这不仅能够有效地降低整体成本,而且有助于理解整个系统的拓扑特征。 ```cpp // 假设使用C++编写并实现了Kruskal算法找到给定图形中的MST #include <iostream> #include <vector> using namespace std; struct Edge { int src, dest, weight; }; class Graph { public: vector<Edge> edges; int V, E; void addEdge(int u, int v, int w); int find(vector<int>& parent, int i); void Union(vector<int>& parent, int x, int y); void KruskalMST(); }; void Graph::addEdge(int u, int v, int w) { edges.push_back({u, v, w}); } int Graph::find(vector<int>& parent, int i) { if (parent[i] == -1) return i; return find(parent, parent[i]); } void Graph::Union(vector<int>& parent, int x, int y) { int xset = find(parent, x); int yset = find(parent, y); parent[xset] = yset; } void Graph::KruskalMST() { // 实现Kruskal算法的具体逻辑... } ``` 请注意以上代码仅为示意性质,在实际编程环境中需根据具体的业务需求调整函数定义及内部实现。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值