CCF 201803-2 碰撞的小球 C++版

本文介绍了一种在一维数轴上模拟多个小球碰撞的方法。这些小球在线段上以固定速度移动,当它们相遇或触碰线段端点时会改变方向。通过计算,可以预测在特定时间点每个小球的位置。

问题描述
  数轴上有一条长度为L(L为偶数)的线段,左端点在原点,右端点在坐标L处。有n个不计体积的小球在线段上,开始时所有的小球都处在偶数坐标上,速度方向向右,速度大小为1单位长度每秒。
  当小球到达线段的端点(左端点或右端点)的时候,会立即向相反的方向移动,速度大小仍然为原来大小。
  当两个小球撞到一起的时候,两个小球会分别向与自己原来移动的方向相反的方向,以原来的速度大小继续移动。
  现在,告诉你线段的长度L,小球数量n,以及n个小球的初始位置,请你计算t秒之后,各个小球的位置。
提示
  因为所有小球的初始位置都为偶数,而且线段的长度为偶数,可以证明,不会有三个小球同时相撞,小球到达线段端点以及小球之间的碰撞时刻均为整数。
  同时也可以证明两个小球发生碰撞的位置一定是整数(但不一定是偶数)。
输入格式
  输入的第一行包含三个整数n, L, t,用空格分隔,分别表示小球的个数、线段长度和你需要计算t秒之后小球的位置。
  第二行包含n个整数a1, a2, …, an,用空格分隔,表示初始时刻n个小球的位置。
输出格式
  输出一行包含n个整数,用空格分隔,第i个整数代表初始时刻位于ai的小球,在t秒之后的位置。
样例输入
3 10 5
4 6 8
样例输出
7 9 9
样例说明
  初始时,三个小球的位置分别为4, 6, 8。

  一秒后,三个小球的位置分别为5, 7, 9。

  两秒后,第三个小球碰到墙壁,速度反向,三个小球位置分别为6, 8, 10。

  三秒后,第二个小球与第三个小球在位置9发生碰撞,速度反向(注意碰撞位置不一定为偶数),三个小球位置分别为7, 9, 9。

  四秒后,第一个小球与第二个小球在位置8发生碰撞,速度反向,第三个小球碰到墙壁,速度反向,三个小球位置分别为8, 8, 10。

  五秒后,三个小球的位置分别为7, 9, 9。

这里写图片描述
这里写图片描述
样例输入
10 22 30
14 12 16 6 10 2 8 20 18 4
样例输出
6 6 8 2 4 0 4 12 10 2
数据规模和约定
  对于所有评测用例,1 ≤ n ≤ 100,1 ≤ t ≤ 100,2 ≤ L ≤ 1000,0 < ai < L。L为偶数。
  保证所有小球的初始位置互不相同且均为偶数。

提交后100分C++代码如下:

#include<bits/stdc++.h> 
using namespace std;
const int N=100+5;
int a[N];//位置
int dir[N];//方向,res[i]=1,方向向右 
int main() {
    int n, l, t; //个数,线段长度,时间 ; 
    cin>>n>>l>>t;
    int i, j, k;
    for(i = 0; i < n; i++) {
        cin>>a[i];
        dir[i] = 1;
    }
    for(i = 1; i <= t; i++) {//1-t时间 ; 
        for(j = 0; j < n; j++) {//0-n-1个小球 ; 
            if((a[j] == l && dir[j]==1) || (a[j] == 0&&dir[j]==-1)) {//位置为l且方向为右或位置是0且方向向左,小球改变方向 ; 
                dir[j] *= -1;
            } else {
                for(k = 0; k < n; k++) {
                    if((a[k] == a[j]) && k != j) {//两球碰撞,均改变方向 ; 
                        dir[k] *= -1;
                        dir[j] *= -1;
                    }
                }
            }
            a[j] += dir[j];//方向向右,坐标加1,向左-1; 
        }
    }
    for(i = 0; i < n; i++)
        cout << a[i] << " ";
    return 0;
}

“`

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值