Awesome Uplift Modeling【如何学习因果推断、因果机器学习和Uplift建模?All in here】

本文介绍了因果机器学习的基础理论,推荐了多本必读的因果推断书籍,并提供了资源链接。涵盖了Pearl的结构因果模型与Rubin的潜在结果模型两大主流方法论,以及它们之间的争议与融合。

Awesome-Uplift-Model

How to Apply Causal ML to Real Scene Modeling?How to learn Causal ML?

Github项目地址:👉https://github.com/JackHCC/Awesome-Uplift-Model👈

👉https://github.com/JackHCC/Awesome-Uplift-Model👈


Basic Theory

Book Reading

The most commonly used models for causal inference are Rubin Causal Model (RCM; Rubin 1978) and Causal Diagram (Pearl 1995). Pearl (2000) introduced the equivalence of these two models, but in terms of application, RCM is more accurate, while Causal Diagram is more intuitive, which is highly praised by computer experts.

Donald Bruce Rubin (born December 22, 1943) is an Emeritus Professor of Statistics at Harvard University. He is

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JackHCC

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值