写在前面
本科毕业设计论文开源,论文与代码地址:Github
基于车辆轨迹时空数据的城市热点预测模型研究
摘要
智能交通在近年得到了学术界和产业界的广泛重视。尤其是随着道路网的不断完善,交通车流越来越庞大,交通流预测显得越来越重要,分析并预测交通状况和交通热点分布情况是交通管控的基础,对城市交通管控有着十分重要的意义。随着车辆轨迹大数据技术、人工智能和机器学习技术的发展,基于机器学习和大数据对车辆密度进行预测已成为重要的技术趋势。
本文基于车辆轨迹大数据,利用机器学习技术对城市交通热点进行预测,主要的研究内容和创新点罗列如下:
首先,建立车流密度提取模型,利用核密度估计算法从车辆轨迹时空数据中提取车辆密度特征,并实现热点预测的可视化。本文从交通属性中车辆密度的角度去分析,相比传统的车流量和车速属性,让交通预测具有更加全局的特征信息,为交通管控增添一个新的维度与视角。
其次,提出预测滑动窗口模型,构建预测所需要的训练数据集,并使用标准的归一化方法进行处理,利用支持向量回归算法进行出租车车辆密度预测和热点预测,最后借助公认的评价指标对模型性能进行评估。为后续神经网络预测工作提供基础性参考。
再次,利用经典的神经网络——多层感知器模型对比不同层数和不同神经元个数的网络结构的性能,并使用循环神经网络中的长短期记忆模型进行预测,完成北京市出租车热点预测并达到预期效果。本文为机器学习应用于交通领域的全局和局部预测提供了新的思路,为该方向的研究提供基础性指标参考。
最后&#