【剑指Offer】丑数

【题目】

把只包含质因子2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14不是,因为它包含质因子7。 习惯上我们把1当做是第一个丑数。求按从小到大的顺序的第N个丑数。

【思路】

根据丑数的定义, 丑数应该是另一个丑数乘以 2、3 或者 5 的结果(1 除外)。因此我们可以创建一个数组,里面的数字是排好序的丑数,每一个丑数都是前面的丑数乘以 2、3 或者 5 得到的。

这种思路的关键在于怎样确保数组里面的丑数是排好序的。假设数组中已经有若干个丑数排好序后存放在数组中,并且把己有最大的丑数记做M,我们接下来分析如何生成下一个丑数。该丑数肯定是前面某一个丑数乘以 2、3 或者 5 的结果, 所以我们首先考虑把已有的每个丑数乘以 2。在乘以 2 的时钝能得到若干个小于或等于 M 的结果。由于是按照顺序生成的,小于或者等于 M 肯定己经在数组中了,我们不需再次考虑:还会得到若干个大于 M 的结果,但我们只需要第一个大于 M 的结果,因为我们希望丑数是按从小到大的顺序生成的,其他更大的结果以后再说。我们把得到的第一个乘以 2 后大于 M 的结果记为 M2,同样,我们把已有的每一个丑数乘以 3 和 5,能得到第一个大于 M 的结果 M3 和 M,那么下一个丑数应该是 M2、M3 和 M5 这 3 个数的最小者。

前面分析的时候,提到把已有的每个丑数分别都乘以 2、3 和 5。事实上这不是必须的,因为已有的丑数是按顺序存放在数组中的。对乘以 2 而言, 肯定存在某一个丑数 T2,排在它之前的每一个丑数乘以 2 得到的结果都会小于已有最大的丑数,在它之后的每一个丑数乘以 2 得到的结果都会太大。我们只需记下这个丑数的位置, 同时每次生成新的丑数的时候,去更新这个 T2。对乘以 3 和 5 而言, 也存在着同样的 T3 和 T5。

【代码】

class Solution {
public:
    int GetUglyNumber_Solution(int index) {
        if(index <= 0){
            return 0;
        }
        vector<int> result;
        result.push_back(1);
        unsigned int index1 = 0, index2 = 0, index3 = 0;
        unsigned int uglyIndex = 1;
        while(uglyIndex < index){
            int min = Min(result[index1] * 2, result[index2] * 3, result[index3] * 5);
            result.push_back(min);
            while(result[index1] * 2 <= min)
                index1++;
            while(result[index2] * 3 <= min)
                index2++;
            while(result[index3] * 5 <= min)
                index3++;
            uglyIndex++;
        }
        return result[uglyIndex-1];
    }
    
    int Min(int num1, int num2, int num3){
        int min = num1 < num2 ? num1 : num2;
        min = min < num3 ? min : num3;
        return min;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值