import matplotlib.pyplot as plt
# 创建绘图对象figure,设置画布大小figsize,分辨率dpi,背景颜色facecolor可以用十六进制颜色代码
fig=plt.figure(figsize=(6,6),dpi=100,facecolor='#dfd7d7')
#划分子图ax
ax=fig.add_subplot(1,1,1)
import numpy as np
x = np.linspace(-3,3,100)
y = np.random.randn(100)
#设置中文显示
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.rcParams['axes.unicode_minus'] = False
#生成散点图
plt.grid(linestyle = ':',color = 'r',alpha = 0.5)
plt.scatter(x,y,c='k',alpha = 0.3,marker = '*',label = 'satter',lw = 1,edgecolor = 'r')
#使用marker改变点形状
plt.xlim(0,4)
plt.ylim(-3,3)
#表格设计
plt.xlabel('x轴')
plt.ylabel('y轴')
plt.axhline(y = 0,color = 'r',ls = '-.',alpha = 0.8)
plt.axvline(x = 2.0,color = 'r',ls = '-.',alpha = 0.8)
plt.legend(loc = 'upper right')
plt.title('Structure of matplotlib')
#生成sin图
x = np.linspace(1,3.5,100)
y = np.sin(x)
plt.plot(x,y,c ='y',alpha = 0.5,ls = '--',label = 'sin(x)',lw = 2)
plt.legend()
#设置平行于x/y轴的参考区域
plt.axvspan(xmin=1.5,xmax=2.5,color='blue',alpha=0.1)
plt.axhspan(ymin=-1,ymax=1,color='yellow',alpha=0.1)
plt.annotate('maxium',xy = (1.5,1),xytext = (1.3,1.3),arrowprops = {
'arrowstyle':'->','connectionstyle':
matplotlib数据可视化实验报告1(最终版)
最新推荐文章于 2025-04-19 22:04:22 发布