windows下CUDA环境配置

CUDA环境配置:

本地环境:

win10 1909

vs2017

CUDA v11.2

所有步骤基本上参照这个博客:

https://blog.youkuaiyun.com/xianhua7877/article/details/80792027

其中由于CUDA版本不同, 需要做一点小修正:

  1. SDK这里, 路径暂时没有添加, 现在跑起来好像也没啥问题, 先放着

    image-20201223173757526

  2. 添加依赖项这里, 新版本中有部分的lib没有, 如果全添加的话会导致有些打不开之类的问题:

    image-20201223173921861

    修正如下:

    cublas.lib
    cuda.lib
    cudadevrt.lib
    cudart.lib
    cudart_static.lib
    cufft.lib
    cufftw.lib
    curand.lib
    cusolver.lib
    cusparse.lib
    nppc.lib
    nppial.lib
    nppicc.lib
    nppidei.lib
    nppif.lib
    nppig.lib
    nppim.lib
    nppist.lib
    nppisu.lib
    nppitc.lib
    npps.lib
    nvblas.lib
    nvml.lib
    nvrtc.lib
    OpenCL.lib
    

成功编译运行例程:

// CUDA runtime 库 + CUBLAS 库   
#include "cuda_runtime.h"  
#include "cublas_v2.h"  

#include <time.h>  
#include <iostream>  

using namespace std;

// 定义测试矩阵的维度  
int const M = 5;
int const N = 10;

int main()
{
	// 定义状态变量  
	cublasStatus_t status;

	// 在 内存 中为将要计算的矩阵开辟空间  
	float *h_A = (float*)malloc(N*M * sizeof(float));
	float *h_B = (float*)malloc(N*M * sizeof(float));

	// 在 内存 中为将要存放运算结果的矩阵开辟空间  
	float *h_C = (float*)malloc(M*M * sizeof(float));

	// 为待运算矩阵的元素赋予 0-10 范围内的随机数  
	for (int i = 0; i < N*M; i++) {
		h_A[i] = (float)(rand() % 10 + 1);
		h_B[i] = (float)(rand() % 10 + 1);

	}

	// 打印待测试的矩阵  
	cout << "矩阵 A :" << endl;
	for (int i = 0; i < N*M; i++) {
		cout << h_A[i] << " ";
		if ((i + 1) % N == 0) cout << endl;
	}
	cout << endl;
	cout << "矩阵 B :" << endl;
	for (int i = 0; i < N*M; i++) {
		cout << h_B[i] << " ";
		if ((i + 1) % M == 0) cout << endl;
	}
	cout << endl;

	/*
	** GPU 计算矩阵相乘
	*/

	// 创建并初始化 CUBLAS 库对象  
	cublasHandle_t handle;
	status = cublasCreate(&handle);

	if (status != CUBLAS_STATUS_SUCCESS)
	{
		if (status == CUBLAS_STATUS_NOT_INITIALIZED) {
			cout << "CUBLAS 对象实例化出错" << endl;
		}
		getchar();
		return EXIT_FAILURE;
	}

	float *d_A, *d_B, *d_C;
	// 在 显存 中为将要计算的矩阵开辟空间  
	cudaMalloc(
		(void**)&d_A,    // 指向开辟的空间的指针  
		N*M * sizeof(float)    // 需要开辟空间的字节数  
	);
	cudaMalloc(
		(void**)&d_B,
		N*M * sizeof(float)
	);

	// 在 显存 中为将要存放运算结果的矩阵开辟空间  
	cudaMalloc(
		(void**)&d_C,
		M*M * sizeof(float)
	);

	// 将矩阵数据传递进 显存 中已经开辟好了的空间  
	cublasSetVector(
		N*M,    // 要存入显存的元素个数  
		sizeof(float),    // 每个元素大小  
		h_A,    // 主机端起始地址  
		1,    // 连续元素之间的存储间隔  
		d_A,    // GPU 端起始地址  
		1    // 连续元素之间的存储间隔  
	);
	cublasSetVector(
		N*M,
		sizeof(float),
		h_B,
		1,
		d_B,
		1
	);

	// 同步函数  
	cudaThreadSynchronize();

	// 传递进矩阵相乘函数中的参数,具体含义请参考函数手册。  
	float a = 1; float b = 0;
	// 矩阵相乘。该函数必然将数组解析成列优先数组  
	cublasSgemm(
		handle,    // blas 库对象   
		CUBLAS_OP_T,    // 矩阵 A 属性参数  
		CUBLAS_OP_T,    // 矩阵 B 属性参数  
		M,    // A, C 的行数   
		M,    // B, C 的列数  
		N,    // A 的列数和 B 的行数  
		&a,    // 运算式的 α 值  
		d_A,    // A 在显存中的地址  
		N,    // lda  
		d_B,    // B 在显存中的地址  
		M,    // ldb  
		&b,    // 运算式的 β 值  
		d_C,    // C 在显存中的地址(结果矩阵)  
		M    // ldc  
	);

	// 同步函数  
	cudaThreadSynchronize();

	// 从 显存 中取出运算结果至 内存中去  
	cublasGetVector(
		M*M,    //  要取出元素的个数  
		sizeof(float),    // 每个元素大小  
		d_C,    // GPU 端起始地址  
		1,    // 连续元素之间的存储间隔  
		h_C,    // 主机端起始地址  
		1    // 连续元素之间的存储间隔  
	);

	// 打印运算结果  
	cout << "计算结果的转置 ( (A*B)的转置 ):" << endl;

	for (int i = 0; i < M*M; i++) {
		cout << h_C[i] << " ";
		if ((i + 1) % M == 0) cout << endl;
	}

	// 清理掉使用过的内存  
	free(h_A);
	free(h_B);
	free(h_C);
	cudaFree(d_A);
	cudaFree(d_B);
	cudaFree(d_C);

	// 释放 CUBLAS 库对象  
	cublasDestroy(handle);

	getchar();

	return 0;
}

输出结果:

image-20201223174033348

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值