排序分类
1. 内部排序和外部排序
- 内部排序:待排序记录存放在计算机随机存储器中(就是内存)进行的排序过程。
- 外部排序:待排序记录的数量很大,以致于内存不能一次容纳全部记录,所以在排序过程中需要对外存进行访问的排序
2. 比较类排序 和 非比较排序
- 比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序。
- 非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序。
二、复杂度分析,算法稳定性和适用场景
三、八大排序算法详解
1. 直接插入排序:(熟悉)
定义:寻找每轮每个元素的插入位置,第 k 轮需要维护前 k 个元素,每轮中的比较都会伴随着后移,最后将第k个元素插入到指定位置。每轮并不能确定元素的最终位置
应用场景:稳定排序,在接近有序的情况下,表现优异
时空复杂度:基本有序的时候接近O(N),最坏O(N*N),空间O(1)
public class Solution {
public int[] sortArray(int[] nums) {
int len = nums.length;
// 循环不变量:将 nums[i] 插入到区间 [0, i) 使之成为有序数组
for (int i = 1; i < len; i++) {
// 先暂存这个元素,然后之前元素逐个后移,留出空位
int temp = nums[i];
int j = i;
// 注意边界 j > 0
while (j > 0 && temp < nums[j-1]) {
nums[j] = nums[j - 1]; //后移
j--;
}
nums[j] = temp;
}
return nums;
}
}
2. 选择排序:(了解)
定义:寻找每一轮最小元素的下标,然后将其余每一轮第一个元素交换,每一轮值交换(移动)了一次,相比插入排序减少了移动次数。即:先选出最小的,再选出第 2 小的,以此类推。
应用场景:不稳定,O(N*N)
时空复杂度:时间O(N*N),空间O(1)
import java.util.Arrays;
public class Solution {
// 选择排序:每一轮选择最小元素交换到未排定部分的开头
public int[] sortArray(int[] nums) {
int len = nums.length;
// 循环不变量:[0, i) 有序,且该区间里所有元素就是最终排定的样子
for (int i = 0; i < len - 1; i++) {
// 选择区间 [i, len - 1] 里最小的元素的索引,交换到下标 i
int minIndex = i;
for (int j = i + 1; j < len; j++) {
if (nums[j] < nums[minIndex]) {
minIndex = j;
}
}
swap(nums, i, minIndex);
}
return nums;
}
private void swap(int[] nums, int index1, int index2) {
int temp = nums[index1];
nums[index1] = nums[index2];
nums[index2] = temp;
}
public static void main(String[] args) {
int[] nums = {5, 2, 3, 1};
Solution solution = new Solution();
int[] res = solution.sortArray(nums);
System.out.println(Arrays.toString(res));
}
}
3. 归并排序:(重点)
定义:借助额外空间,合并两个有序数组,得到更长的有序数组。分而治之(分治思想)。「分而治之」思想的形象理解是「曹冲称象」、MapReduce,在一定情况下可以并行化。
应用场景:稳定,常用与数组排序
时空复杂度:时间O(logN), 空间O(N) //借助额外空间
public class Solution {
// 归并排序
public int[] sortArray(int[] nums) {
int len = nums.length;
int[] temp = new int[len];
mergeSort(nums, 0, len - 1, temp);
return nums;
}
private void mergeSort(int[] nums, int left, int right, int[] temp) {
if(left == right){
return;
}
int mid = left + (right - left) / 2;
mergeSort(nums, left, mid, temp);
mergeSort(nums, mid + 1, right, temp);
// 如果数组的这个子区间本身有序,无需合并
if (nums[mid] <= nums[mid + 1]) {
return;
}
mergeOfTwoSortedArray(nums, left, mid, right, temp);
}
private void mergeOfTwoSortedArray(int[] nums, int left, int mid, int right, int[] temp) {
System.arraycopy(nums, left, temp, left, right + 1 - left);
int i = left;
int j = mid + 1;
for (int k = left; k <= right; k++) {
if (i == mid + 1) {
nums[k] = temp[j];
j++;
} else if (j == right + 1) {
nums[k] = temp[i];
i++;
} else if (temp[i] <= temp[j]) {
// 注意写成 < 就丢失了稳定性(相同元素原来靠前的排序以后依然靠前)
nums[k] = temp[i];
i++;
} else {
// temp[i] > temp[j]
nums[k] = temp[j];
j++;
}
}
}
}
优化 1:在「小区间」里转向使用「插入排序」,Java 源码里面也有类似这种操作,「小区间」的长度是个超参数,需要测试决定,我这里参考了 JDK 源码;
优化 2: 在「两个数组」本身就是有序的情况下,无需合并;
优化 3:全程使用一份临时数组进行「合并两个有序数组」的操作,避免创建临时数组和销毁的消耗,避免计算下标偏移量。
注意:算法稳定性,区别就在 <=(稳定) 和 < (不稳定),已在代码中注明,需要设置成稳定型。
「归并排序」比「快速排序」好的一点是,它借助了额外空间,可以实现「稳定排序」,Java 里对于「对象数组」的排序任务,就是使用归并排序(的升级版 TimSort,在这里就不多做介绍)。
4. 快速排序:(重点)
定义:快速排序每一次都排定一个元素(这个元素呆在了它最终应该呆的位置),然后递归地去排它左边的部分和右边的部分,依次进行下去,直到数组有序;
分而治之(分治思想),与「归并排序」不同,「快速排序」在「分」这件事情上不想「归并排序」无脑地一分为二,而是采用了 partition 的方法,因此就没有「合」的过程。
针对特殊测试用例:顺序数组或者逆序数组,一定要随机化选择切分元素(pivot),否则等同于冒泡排序或者「选择排序」;导致递归树很高。
应用场景:不稳定,常用与数组排序。
时空复杂度:时间O(N logN),空间O(logN) //递归栈的高度
import java.util.Random;
public class Solution {
// 快速排序 2:双指针(指针对撞)快速排序
/**
* 列表大小等于或小于该大小,将优先于 quickSort 使用插入排序
*/
private static final int INSERTION_SORT_THRESHOLD = 7;
private static final Random RANDOM = new Random();
public int[] sortArray(int[] nums) {
int len = nums.length;
quickSort(nums, 0, len - 1);
return nums;
}
private void quickSort(int[] nums, int left, int right) {
// 小区间使用插入排序
if (right - left <= INSERTION_SORT_THRESHOLD) {
insertionSort(nums, left, right);
return;
}
int pIndex = partition(nums, left, right);
quickSort(nums, left, pIndex - 1);
quickSort(nums, pIndex + 1, right);
}
/**
* 对数组 nums 的子区间 [left, right] 使用插入排序
**/
private void insertionSort(int[] nums, int left, int right) {
for (int i = left + 1; i <= right; i++) {
int temp = nums[i];
int j = i;
while (j > left && nums[j - 1] > temp) {
nums[j] = nums[j - 1];
j--;
}
nums[j] = temp;
}
}
private int partition(int[] nums, int left, int right) {
int randomIndex = left + RANDOM.nextInt(right - left + 1);
swap(nums, randomIndex, left);
int pivot = nums[left];
int lt = left + 1;
int gt = right;
// 循环不变量:
// all in [left + 1, lt) <= pivot
// all in (gt, right] >= pivot
while (true) {
while (lt <= right && nums[lt] < pivot) {
lt++;
}
while (gt > left && nums[gt] > pivot) {
gt--;
}
if (lt >= gt) {
break;
}
// 细节:相等的元素通过交换,等概率分到数组的两边
swap(nums, lt, gt);
lt++;
gt--;
}
swap(nums, left, gt);
return gt;
}
private void swap(int[] nums, int index1, int index2) {
int temp = nums[index1];
nums[index1] = nums[index2];
nums[index2] = temp;
}
}
/************快排简化版本*************/
public class QuickSort {
public static void quickSort(int[] arr,int low,int high){
int i,j,temp,t;
if(low>high){
return;
}
i=low;
j=high;
//temp就是基准位
temp = arr[low];
while (i<j) {
//先看右边,依次往左递减
while (temp<=arr[j]&&i<j) {
j--;
}
//再看左边,依次往右递增
while (temp>=arr[i]&&i<j) {
i++;
}
//如果满足条件则交换
if (i<j) {
t = arr[j];
arr[j] = arr[i];
arr[i] = t;
}
}
//最后将基准为与i和j相等位置的数字交换
arr[low] = arr[i];
arr[i] = temp;
//递归调用左半数组
quickSort(arr, low, j-1);
//递归调用右半数组
quickSort(arr, j+1, high);
}
public static void main(String[] args){
int[] arr = {10,7,2,4,7,62,3,4,2,1,8,9,19};
quickSort(arr, 0, arr.length-1);
for (int i = 0; i < arr.length; i++) {
System.out.println(arr[i]);
}
}
}