ADA算法知识(十)动态规划相应的问题

本文探讨了如何使用动态规划解决在一个无向图中,从节点s到节点t,利用k条边的所有可能路径数量的问题。文章首先定义了问题的动态规划状态P(u,v,i),然后给出了P(u,v,1)的初始条件,接着提出了递归公式,并讨论了使用Floyd-Warshall算法进行计算的方法,最后分析了算法的时间复杂度为O(n^3)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[How Many Paths?] You are given a map in the form of an undirected graph G = (V,E) and would like to know how many possible ways to walk (that are, paths with possible repeated nodes) between two nodes s and t, using k number of edges. You would like to use dynamic programming to solve the problem.

For any nodes u,v belongs to V, and i>=0, let P(u,v,i) denote the number of walks that starts from u and ends at v that use i edges. Note that question now is to compute P(s,t,k).

(a) What is the valu of P(u,v,1) for any u,v belong to V?

(b) Write down a recurrence for the value of P(u,v,i+1).

(c) Describe an algorithm for computing P(u,v,k) for every u,v belong to V. What is the complexity of the algorithm?

 

(a)Obviously, when i=1, P(u,v,1)=1

(b)use dfs

(c)use floydwarshall algorithm

and the complexity of the algorithm is O(n^3)

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值