一、背景:
- 现有基于IoU的边界框回归方法主要通过添加新的损失项来加速收敛,忽略了IoU损失项本身的局限性,且在不同检测器和检测任务中不能自我调整,泛化性不强。
- 通过分析边界框回归模型,
inner_iou
论文中发现区分不同的回归样本,并使用不同尺度的辅助边界框来计算损失,可以有效加速边界框回归过程。对于高IoU样本,使用较小的辅助边界框计算损失可加速收敛,而较大的辅助边界框适用于低IoU样本。
本文将YOLOv9
默认的CIoU
损失函数修改成inner_IoU
、inner_GIoU
、inner_DIoU
、inner_CIoU
、inner_EIoU
、inner_SIoU
。
专栏目录:YOLOv9改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进