以GPU中的长向量的快速加法为例,展示CUDA程序的基本框架:
三种不同传值方式的核函数:
1. 返回值
2. 使用指针
3.使用引用
#include <math.h>
#include <stdio.h>
const double EPSILON = 1.0e-15;
const double a = 1.23;
const double b = 2.34;
const double c = 3.57;
void __global__ add1(const double *x, const double *y, double *z, const int N);
void __global__ add2(const double *x, const double *y, double *z, const int N);
void __global__ add3(const double *x, const double *y, double *z, const int N);
void check(const double *z, int N);
int main(void)
{
const int N = 100000001;
const int M = sizeof(double) * N;
double *h_x = (double*) malloc(M);
double *h_y = (double*) malloc(M);
double *h_z = (double*) malloc(M);
for (int n = 0; n < N; ++n)
{
h_x[n] = a;
h_y[n] = b;
}
double *d_x, *d_y, *d_z;
cudaMalloc((void **)&d_x, M);
cudaMalloc((void **)&d_y, M);
cudaMalloc((void **)&d_z, M);
cudaMemcpy(d_x, h_x, M, cudaMemcpyHostToDevice);
cudaMemcpy(d_y, h_y, M, cudaMemcpyHostToDevice);
const int block_size = 128;
const int grid_size = (N + block_size - 1) / block_size;
add1<<<grid_size, block_size>>>(d_x, d_y, d_z, N);
cudaMemcpy(h_z, d_z, M, cudaMemcpyDeviceToHost);
check(h_z, N);
add2<<<grid_size, block_size>>>(d_x, d_y, d_z, N);
cudaMemcpy(h_z, d_z, M, cudaMemcpyDeviceToHost);
check(h_z, N);
add3<<<grid_size, block_size>>>(d_x, d_y, d_z, N);
cudaMemcpy(h_z, d_z, M, cudaMemcpyDeviceToHost);
check(h_z, N);
free(h_x);
free(h_y);
free(h_z);
cudaFree(d_x);
cudaFree(d_y);
cudaFree(d_z);
return 0;
}
double __device__ add1_device(const double x, const double y)
{
return (x + y);
}
void __device__ add2_device(const double x, const double y, double *z)
{
*z = x + y;
}
void __device__ add3_device(const double x, const double y, double &z)
{
z = x + y;
}
void __global__ add1(const double *x, const double *y, double *z, const int N)
{
const int n = blockDim.x * blockIdx.x + threadIdx.x;
if (n < N)
{
z[n] = add1_device(x[n], y[n]);
}
}
void __global__ add2(const double *x, const double *y, double *z, const int N)
{
const int n = blockDim.x * blockIdx.x + threadIdx.x;
if (n < N)
{
add2_device(x[n], y[n], &z[n]);
}
}
void __global__ add3(const double *x, const double *y, double *z, const int N)
{
const int n = blockDim.x * blockIdx.x + threadIdx.x;
if (n < N)
{
add3_device(x[n], y[n], z[n]);
}
}
void check(const double *z, const int N)
{
bool has_error = false;
for (int n = 0; n < N; ++n)
{
if (fabs(z[n] - c) > EPSILON)
{
has_error = true;
}
}
printf("%s\n", has_error ? "Has errors" : "No errors");
}