第一部分:GPU并行计算基础与CUDA编程入门
目录
- 引言:CPU与GPU的计算范式之争
- GPU并行计算原理:SIMT架构详解
- CUDA编程模型:从内核函数到线程组织
- 小结与预告
1. 引言:CPU与GPU的计算范式之争
长久以来,CPU(中央处理器)一直是计算机的计算核心。其设计理念在于高效处理各种复杂的逻辑控制任务和通用计算任务。一个典型的CPU通常只有几个到几十个核心,擅长串行计算和复杂的逻辑判断。
然而,随着大数据和人工智能时代的到来,特别是深度学习的崛起,计算需求发生了巨大的变化。深度学习模型通常需要进行大量的矩阵运算,这些运算具有高度的并行性。CPU在处理这种大规模并行计算任务时,其串行处理能力和有限的核心数就成为了瓶颈。