转化为维护最大连续子串和
#include<bits/stdc++.h>
#define ll long long
#define pi pair<int, ll>
#define mk make_pair
using namespace std;
const int maxn = 2010;
struct node {
int x, y;
ll w;
bool operator<(const node& t) const {
if (y == t.y)
return x < t.x;
return y > t.y;
}
}p[maxn];
int X[maxn], Y[maxn];
ll mx[maxn * 4], L[maxn * 4], R[maxn * 4], sum[maxn * 4];
vector<pi> G[maxn];
#define ls o * 2
#define rs o * 2 + 1
#define mid (l + r) / 2
void up(int o, int l, int r, int k, ll w) {
if (l == r) {
mx[o] += w;
L[o] += w;
R[o] += w;
sum[o] += w;
return;
}
if (k <= mid)
up(ls, l, mid, k, w);
else
up(rs, mid + 1, r, k, w);
sum[o] = sum[ls] + sum[rs];
L[o] = max(L[ls], sum[ls] + L[rs]);
R[o] = max(R[rs], sum[rs] + R[ls]);
mx[o] = max(L[o], R[o]);
ll tmp = max(mx[ls], mx[rs]);
ll tmp2 = max(tmp, R[ls] + L[rs]);
mx[o] = max(mx[o], tmp2);
}
int main() {
int T;
scanf("%d", &T);
while (T--) {
int n, m = 0;
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%d%d%lld", &p[i].x, &p[i].y, &p[i].w);
X[i] = p[i].x;
Y[i] = p[i].y;
}
sort(X + 1, X + 1 + n);
sort(Y + 1, Y + 1 + n);
int sz1 = unique(X + 1, X + 1 + n) - X - 1;
int sz2 = unique(Y + 1, Y + 1 + n) - Y - 1;
for (int i = 1; i <= n; i++) {
p[i].x = lower_bound(X + 1, X + 1 + sz1, p[i].x) - X;
p[i].y = lower_bound(Y + 1, Y + 1 + sz2, p[i].y) - Y;
G[p[i].y].push_back(mk(p[i].x, p[i].w));
}
ll ans = 0;
for (int i = 1; i <= sz2; i++) { //枚举下边界
for (int j = 1; j <= sz1 * 4; j++)
mx[j] = L[j] = R[j] = sum[j] = 0;
for (int j = i; j; j--) { //枚举上边界
for (auto tmp : G[j])
up(1, 1, sz1, tmp.first, tmp.second);
ans = max(ans, mx[1]);
}
}
printf("%lld\n", ans);
for (int i = 1; i <= sz2; i++)
G[i].clear();
}
}
XLS代码