这是个时间复杂度为n^3, 空间复杂度为n^2的DP
具体思路见算法导论P211
#include<algorithm>
#include <iostream>
#include <sstream>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <cstdio>
#include <math.h>
#include <queue>
#include <stack>
#include <set>
#include <map>
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
#define rep(i,a,n) for (int i = a; i < n; ++i)
#define per(i,a,n) for (int i = n-1; i >= a; --i)
#define SZ(x) ((int)x.size())
using namespace std;
//head
constexpr int maxn = 1e4;
vector<int> p;//矩阵A的大小为p[i - 1] * p[i]
vector<vector<int> > m, s; //m[i][j]代表计算矩阵A[i][j]所需标量乘法次数的最小值,s[i][j]记录最优值m[i][j]对应的分割点
int MATRIX_CHAIN_ORDER(vector<int> p)
{
int n = p.max_size() - 1;
rep(i, 1, n + 1) m[i][i] = 0;
rep(l, 2, n + 1)
{
rep(i, 1, n - l + 2)
{
int j = i + l - 1;
m[i][j] = 1e9 + 7;
rep(k, i, j)
{
int q = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j];
if (q < m[i][j])
{
m[i][j] = q;
s[i][j] = k;
}
}
}
}
}
void PRINT_OPTIMAL_PARENS(vector<vector<int> > s, int i, int j)//输出函数
{
if (i == j)
printf("%d", A[i]);
else
{
printf("(");
PRINT_OPTIMAL_PARENS(s, i, s[i][j]);
PRINT_OPTIMAL_PARENS(s, s[i][j] + 1, j);
printf(")");
}
}
int main()
{
system("pause");
return 0;
}