深入Python3中property属性装饰器

本文深入探讨Python中property类的使用,展示如何利用property装饰器实现类属性的封装,包括getter、setter和deleter的运用,以及其底层描述符协议的实现机制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

property类返回 property 属性,其语法格式:

#fget 是获取属性值的函数。 fset 是用于设置属性值的函数。 fdel 是用于删除属性值的函数。并且 doc 为属性对象创建文档字符串。
class  property(fget=None, fset=None, fdel=None, doc=None)

一个典型的用法是定义一个托管属性 x

class C:
    def __init__(self):
        self._x = None

    def getx(self):
        return self._x

    def setx(self, value):
        self._x = value

    def delx(self):
        del self._x

    x = property(getx, setx, delx, "I'm the 'x' property.")

如果 c 是 C 的实例,c.x 将调用getter,c.x = value 将调用setter, del c.x 将调用deleter。

这使得用 property() 作为 decorator装饰器 来创建只读的特征属性可以很容易地实现:

class Parrot:
    def __init__(self):
        self._voltage = 100000

    @property
    def voltage(self):
        """获取当前电压。"""
        return self._voltage

以上 @property 装饰器会将 voltage() 方法转化为一个具有相同名称的只读属性的 "getter",并将 voltage 的文档字符串设置为 "获取当前电压。",即给出了doc。

如果给出doc,doc 将成为该 property 属性的文档字符串,否则该 property 将拷贝 fget 的文档字符串(如果存在)。

特征属性对象具有 gettersetter 以及 deleter 方法,它们可用作装饰器来创建该特征属性的副本,并将相应的访问函数设为所装饰的函数。

这最好是用一个例子来解释:

class C:
    def __init__(self):
        self._x = None

    @property
    def x(self):
        """I'm the 'x' property."""
        return self._x

    @x.setter
    def x(self, value):
        self._x = value

    @x.deleter
    def x(self):
        del self._x

上述代码与第一个例子完全等价。 注意一定要给附加函数与原始的特征属性相同的名称 (在本例中为 x)

返回的特征属性对象同样具有与构造器参数相对应的属性 fgetfset 和 fdel。现版本的特征属性对象的文档字符串现在是可写的。

 

 内置装饰器:property

property是内建装饰器,它通常存在于类中,可以将一个函数定义成一个属性,属性的值就是该函数return的内容。

通常我们给实例绑定属性是这样的:

class Student(object):
    def __init__(self, name, age=None):
        self.name = name
        self.age = age

# 实例化
XiaoMing = Student("小明")

# 添加属性
XiaoMing.age=25

# 查询属性
XiaoMing.age

# 删除属性
del XiaoMing.age

但是稍有经验的开发人员,一下就可以看出,这样直接把属性暴露出去,为了 能对属性的值做合法性限制。我们可以这样写:

class Student(object):
    def __init__(self, name):
        self.name = name

    def set_age(self, age):
        if not isinstance(age, int):
            raise ValueError('输入不合法:年龄必须为数值!')
        if not 0 < age < 100:
            raise ValueError('输入不合法:年龄范围必须0-100')
        self._age=age

    def get_age(self):
        return self._age

    def del_age(self):
        self._age = None


XiaoMing = Student("小明")

# 添加属性
XiaoMing.set_age(25)

# 查询属性
XiaoMing.get_age()

# 删除属性
XiaoMing.del_age()

上面的代码设计虽然可以变量的定义,但是可以发现不管是获取还是赋值(都是通过函数)都和我们平时见到的不一样。
按照我们思维习惯应该是这样的:

# 赋值
XiaoMing.age = 25

# 获取
XiaoMing.age

那么这样的方式我们如何实现呢。请看下面的代码。

class Student(object):
    def __init__(self, name):
        self.name = name

    @property
    def age(self):
        return self._age

    @age.setter
    def age(self, value):
        if not isinstance(value, int):
            raise ValueError('输入不合法:年龄必须为数值!')
        if not 0 < value < 100:
            raise ValueError('输入不合法:年龄范围必须0-100')
        self._age=value

    @age.deleter
    def age(self):
        del self._age

XiaoMing = Student("小明")

# 设置属性
XiaoMing.age = 25

# 查询属性
XiaoMing.age

# 删除属性
del XiaoMing.age

@property装饰过的函数,会将被装饰函数定义成一个属性,属性的值就是该函数return的内容。同时,会将这个函数变成另外一个装饰器。就像后面我们使用的@age.setter@age.deleter

  • @age.setter 使得我们可以使用XiaoMing.age = 25这样的方式直接赋值。
  • @age.deleter 使得我们可以使用del XiaoMing.age这样的方式来删除属性。

property 的底层实现机制是「描述符」,这里也介绍一下吧。

如下,我写了一个类,里面使用了 property 将 math 变成了类实例的属性

class Student:
    def __init__(self, name):
        self.name = name

    @property
    def math(self):
        return self._math

    @math.setter
    def math(self, value):
        if 0 <= value <= 100:
            self._math = value
        else:
            raise ValueError("有效值必须为[0,100]")

 

为什么说 property 底层是基于描述符协议的呢?通过 PyCharm 点击进入 property 的源码,很可惜,只是一份类似文档一样的伪源码,并没有其具体的实现逻辑。

不过,从这份伪源码的魔法函数结构组成,可以大体知道其实现逻辑。

 

这里我自己通过模仿其函数结构,结合「描述符协议」来自己实现类 property 特性。

代码如下:

class TestProperty(object):

    def __init__(self, fget=None, fset=None, fdel=None, doc=None):
        self.fget = fget
        self.fset = fset
        self.fdel = fdel
        self.__doc__ = doc

    def __get__(self, obj, objtype=None):
        print("in __get__")
        if obj is None:
            return self
        if self.fget is None:
            raise AttributeError
        return self.fget(obj)

    def __set__(self, obj, value):
        print("in __set__")
        if self.fset is None:
            raise AttributeError
        self.fset(obj, value)

    def __delete__(self, obj):
        print("in __delete__")
        if self.fdel is None:
            raise AttributeError
        self.fdel(obj)


    def getter(self, fget):
        print("in getter")
        return type(self)(fget, self.fset, self.fdel, self.__doc__)

    def setter(self, fset):
        print("in setter")
        return type(self)(self.fget, fset, self.fdel, self.__doc__)

    def deleter(self, fdel):
        print("in deleter")
        return type(self)(self.fget, self.fset, fdel, self.__doc__)

 

然后 Student 类,我们也相应改成如下

class Student:
    def __init__(self, name):
        self.name = name

    # 其实只有这里改变
    @TestProperty
    def math(self):
        return self._math

    @math.setter
    def math(self, value):
        if 0 <= value <= 100:
            self._math = value
        else:
            raise ValueError("有效值必须为[0,100]")

为了便于理解,这里做两点说明:

  1. 使用类装饰器TestProperty装饰后,math 不再是一个方法,而是TestProperty 类的一个实例。所以第二个math函数可以使用 math.setter 来装饰,本质是调用TestProperty.setter 来产生一个新的 TestProperty 实例赋值给第二个math
  2. 第一个 math 和第二个 math 是两个不同 TestProperty 实例。但他们都属于同一个描述符类(TestProperty),当对 math 赋值时,就会进入 TestProperty.__set__,当对math 进行取值里,就会进入 TestProperty.__get__。仔细一看,其实最终访问的还是Student实例的 _math 属性。

说了这么多,还是运行一下,更加直观一点。

# 运行后,会直接打印这一行,这是在实例化 TestProperty 并赋值给第二个math
in setter
>>>
>>> s1.math = 90
in __set__
>>> s1.math
in __get__
90

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

薛定谔的猫96

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值