离近仔细观察立方体的边缘,会发现模型边缘有锯齿的情况。这些锯齿边缘(Jagged Edges)
的产生和光栅器将顶点数据转化为片段的方式有关。
光栅器是位于最终处理过的顶点之后到片段着色器之前所经过的所有的算法与过程的总和。光栅器会将一个图元的所有顶点作为输入,并将它转换为一系列的片段。顶点坐标理论上可以取任意值,但片段不行,因为它们受限于你窗口的分辨率。顶点坐标与片段之间几乎永远也不会有一对一的映射,所以光栅器必须以某种方式来决定每个顶点最终所在的片段/屏幕坐标。
这里我们可以看到一个屏幕像素的网格,每个像素的中心包含有一个采样点(Sample Point),它会被用来决定这个三角形是否遮盖了某个像素。图中红色的采样点被三角形所遮盖,在每一个遮住的像素处都会生成一个片段。虽然三角形边缘的一些部分也遮住了某些屏幕像素,但是这些像素的采样点并没有被三角形内部所遮盖,所以它们不会受到片段着色器的影响。
你现在可能已经清楚走样的原因了。完整渲染后的三角形在屏幕上会是这样的:
由于屏幕像素总量的限制,有些边缘的像素能够被渲染出来,而有些则不会。结果就是我们使用了不光滑的边缘来渲染图元,导致之前讨论到的锯齿边缘。
Multisampling
多重采样抗锯齿(Multisample Anti-aliasing, MSAA)
真正的工作方式是,无论三角形遮盖了多少个子采样点,(每个图元中)每个像素只运行一次片段着色器。片段着色器所使用的顶点数据会插值到每个像素的中心,所得到的结果颜色会被储存在每个被遮盖住的子采样点中。当颜色缓冲的子样本被图元的所有颜色填满时,所有的这些颜色将会在每个像素内部平均化。
简单来说,一个像素中如果有更多的采样点被三角形遮盖,那么这个像素的颜色就会更接近于三角形的颜色。
如果我们想要在OpenGL
中使用MSAA
,我们必须要使用一个能在每个像素中存储大于1个颜色值的颜色缓冲(因为多重采样需要我们为每个采样点都储存一个颜色)。所以,我们需要一个新的缓冲类型,来存储特定数量的多重采样样本,它叫做多重采样缓冲(Multisample Buffer)
。
glfwWindowHint(GLFW_SAMPLES, 4);
// 现在再调用glfwCreateWindow创建渲染窗口时,每个屏幕坐标就会使用一个包含4个子采样点的颜色缓冲了。GLFW会自动创建一个每像素4个子采样点的深度和样本缓冲。这也意味着所有缓冲的大小都增长了4倍。
glEnable(GL_MULTISAMPLE);