题意:给一串序列,需要将序列划分成k组,要求每组连续的子序和为奇数,存在答案则输出答案每个区间的右端点
思路:还是先想到暴力回溯,结果还是超时了
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 2e5+5;
const int inf = 0x3f3f3f3f;
ll n, q, k, a[maxn], ok, sum[maxn];
vector<int> res;
void solve(int i, int cnt)
{
if (ok)
return;
if (cnt == k && res[k-1] == n) {
ok = 1;
printf("YES\n");
for (int t = 0; t < res.size(); t++)
printf("%d ", res[t]);
printf("\n");
return;
}
for (int t = i+1; t <= n; t++) {
if ((sum[t]-sum[i])&1) {
res.push_back(t);
solve(t, cnt+1);
res.pop_back();
}
if (n - t < k - cnt) {
return;
}
}
}
int main()
{
while (cin >> q) {
for (int i = 0; i < q; i++) {
cin >> n >> k;
sum[0] = 0;
for (int j = 1; j <= n; j++) {
cin >> a[j];
sum[j] = sum[j-1] + a[j];
}
ok = 0;
solve(0, 0);
if (!ok)
cout << "NO" << endl;
}
}
return 0;
}
看了别人的答案,发现只要统计奇数的个数,只要奇数个数与k同奇或同偶即可。
简单证明:若k为2,奇数个数为奇数,若取其中一个区间和为奇数,则另一个区间必然为偶数不成立;若奇数个数为偶数,则两区间都满足区间和为奇数成立。若k为3,奇数个数为奇数,则取一个区间后剩下的区间和为偶数,从里面可以再取出两个区间和为奇数的区间,故成立。
由于区间和为奇数,右端点只需要输出奇数就行
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 2e5+5;
const int inf = 0x3f3f3f3f;
ll n, q, k, a[maxn], ok, sum[maxn];
int main()
{
while (cin >> q) {
for (int i = 0; i < q; i++) {
vector<int> res;
cin >> n >> k;
sum[0] = 0;
for (int j = 1; j <= n; j++) {
cin >> a[j];
}
for (int j = 1; j <= n; j++)
if (a[j]&1)
res.push_back(j);
int t = res.size();
if (res.size() < k || (res.size()&1) != (k&1))
cout << "NO" << endl;
else {
printf("YES\n");
for (int j = 0; j < k-1; j++)
printf("%d ", res[j]);
printf("%d\n", n);
}
}
}
return 0;
}