自回归(Autoregressive)和自编码(Autoencoder)语言模型

一、 自回归语言模型

听到自回归语言模型(Autoregressive LM)这个词,我们知道一般的语言模型都是从左到右计算某个词出现的概率,但是当我们做完型填空或者阅读理解这一类NLP任务的时候词的上下文信息都是需要考虑的,而这个时候只考虑了该词的上文信息而没有考虑到下文信息。所以,反向的语言模型出现了,就是从右到左计算某个词出现的概率,这一类语言模型称之为自回归语言模型。像坚持只用单向Transformer的GPT就是典型的自回归语言模型,也有像ELMo那种拼接两个上文和下文LSTM的变形自回归语言模型。

二、自编码语言模型

自编码语言模型(Autoencoder LM)区别于上一节所述,自回归语言模型是根据上文或者下文来预测后一个单词。那不妨换个思路,我把句子中随机一个单词用[mask]替换掉,是不是就能同时根据该单词的上下文来预测该单词。我们都知道Bert在预训练阶段使用[mask]标记对句子中15%的单词进行随机屏蔽,然后根据被mask单词的上下文来预测该单词,这就是自编码语言模型的典型应用。

三、两种模型的优缺点对比

自回归语言模型没能自然的同时获取单词的上下文信息ELMo把两个方向的LSTM做concat是一个很好的尝试,但是效果并不是太好),而自编码语言模型能很自然的把上下文信息融合到模型中(Bert中的每个Transformer都能看到整句话的所有单词,等价于双向语言模型),但自编码语言模型也有其缺点,就是在Fine-tune阶段,模型是看不到[mask]标记的,所以这就会带来一定的误差。XLNet将二者的上述优缺点做了一个完美的结合,在自回归语言模型中自然地引入上下文信息,并且解决自编码语言模型两阶段保持一致的问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值