
每天码一点
soleillllling
这个作者很懒,什么都没留下…
展开
-
【码】微调预训练resnet50进行树叶分类
解压数据集:import osimport zipfile# os.chdir('./classify-leaves.zip')data=zipfile.ZipFile('classify-leaves.zip','r')data.extractall()原创 2021-06-04 16:44:26 · 812 阅读 · 0 评论 -
【码】FashionMNIST
import numpy as npimport matplotlib.pyplot as pltimport torchimport copyimport torch.nn as nnfrom torchvision.datasets import FashionMNISTfrom torchvision import transformsimport torch.utils.data as Dataimport csvimport gzipimport pandas as pdi.原创 2021-05-29 22:29:05 · 95 阅读 · 0 评论 -
【码】Softmax回归代码
来源:动手学-深度学习-softmax回归1.把标签y表示为one-hot编码这点要时刻牢记,在代码中有体现。one-hot编码:类别对应的分量设置为1,其他分量设置为0。例如“猫”为(1,0,0),“狗”为(0,1,0),“鸡”为(0,0,1)2.将模型的输出视作概率o为模型的输出(没有做归一化操作);y_hat为归一化后的概率。3.损失函数yi为独热标签向量。上面给出的是,梯度为4.代码利用cs231n的作业的softmax代码学习。就是.原创 2021-05-26 16:52:26 · 482 阅读 · 0 评论 -
【每天码一点】mnist:数据降维+特征可视化
目录1.PCA2. 自编码模型1.PCAfrom sklearn import datasetsfrom sklearn import decompositionimport matplotlib.pyplot as pltimport numpy as npimport seabornfrom mpl_toolkits.mplot3d import Axes3D%matplotlib notebookdef load_data(path): with.原创 2021-05-20 20:43:44 · 1432 阅读 · 0 评论 -
【每天码一点】mnist:softmax回归
参考cs231n作业一的softmaximport numpy as npimport matplotlib.pyplot as pltdef load_data(path): with np.load(path) as f: x_train, y_train = f['x_train'].astype('float32').reshape(60000,784), f['y_train'] x_test, y_test = f['.原创 2021-05-18 00:11:16 · 147 阅读 · 0 评论 -
【每天码一点】cs231n作业一:KNN
import numpy as npimport matplotlib.pyplot as pltimport randomdef unpickle(file): import pickle with open(file, 'rb') as fo: dict = pickle.load(fo, encoding='bytes') return dictX_train,y_train,X_test,y_test=[],[],[],[]for i ...原创 2021-05-13 23:33:50 · 236 阅读 · 0 评论