链表相关面试题

文章介绍了在Java中通过快慢指针和List容器解决链表中四种不同长度和条件下的中间节点查找问题,包括返回中点、对称位置的上一个/下一个节点以及特殊情况下的前一个节点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

链表相关面试题

基础篇——Java实现链表请看这里

一、寻找链表中间的节点

针对链表数据结构,有以下四个需求

1)输入链表头节点,奇数长度返回中间节点,偶数长度返回对称位置的上一个节点
2)输入链表头节点,奇数长度返回中间节点,偶数长度返回对称位置的下一个节点
3)输入链表头节点,奇数长度返回中间节点前一个,偶数长度返回对称位置前面的第二个节点
4)输入链表头节点,奇数长度返回中间节点前一个,偶数长度返回对称位置的上一个节点
这四个需求我们都只需双指针(一快一慢)即可实现

一个完整链表的类由类LinkNode表示

public static class LinkNode{
   
    public int value;
    //表示下一个节点的引用
    public LinkNode next;
    public LinkNode(int v) {
   
        value = v;
    }
}
1.输入链表头节点,奇数长度返回中点,偶数长度返回对称位置的上一个节点,如下图所示

在这里插入图片描述

代码实现如下:

/**
 * 寻找中间的节点或者是中间线的前一个节点
 * @param head 头节点
 * @return 符合需求的节点
 */
public static LinkNode findMidPre(LinkNode head){
   
    if (head==null || head.next==null || head.next.next==null){
   
        return head;
    }
    LinkNode slow = head.next;
    //快指针,指向第三个节点
    LinkNode fast = head.next.next;
    //指针逐个遍历直到获取到空,慢指针每次走一步,快指针每次走两步
    while (fast.next!=null && fast.next.next!=null){
   
        fast = fast.next.next;
        slow = slow.next;
    }
    return slow;
}
 /**
     * list 容器实现
     * @param head
     * @return
     */
    public static LinkNode findMidPreList(LinkNode head) {
   
        if (head == null) {
   
            return null;
        }
        LinkNode cur = head;
        ArrayList<LinkNode> arr = new ArrayList<>();
        while (cur != null) {
   
            arr.add(cur);
            cur = cur.next;
        }
        return arr.get((arr.size() - 1) / 2);
    }
2.输入链表头节点,奇数长度返回中点,偶数长度返回对称位置的下一个节点,如下图所示

在这里插入图片描述

/**
 * 寻找中间的节点或者是中间线的后一个节点
 * @param head 头节点
 * @return 符合需求的节点
 */
public static LinkNode findMidDown(LinkNode head){
   
    if (head==null || head.next==null ){
   
        return head;
    }
    //快指针,指向第二个节点,并且它们的起点相同
    LinkNode slow = head
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值