

1*1的卷积层相当于全连接层



import torch
from torch import nn
from d2l import torch as d2l
# NiN块
def nin_block(in_channels,out_channels,kernel_size,strides,padding):
return nn.Sequential(nn.Conv2d(in_channels,out_channels,kernel_size,strides,padding),
nn.ReLU(),
nn.Conv2d(out_channels,out_channels,kernel_size=1),
nn.ReLU(),
nn.Conv2d(out_channels,out_channels,kernel_size=1),
nn.ReLU())
# NiN模型
# 灰度图
net = nn.Sequential(nin_block(1,96,kernel_size=11,strides=4,padding=0),
nn.MaxPool2d(kernel_size=3,stride=2),
nin_block(96,256,kernel_size=5,strides=1,padding=2),
nn.MaxPool2d(3,stride=2),
nin_block(256, 384, kernel_size=3, strides=1, padding=1),
nn.MaxPool2d(3, stride=2),
nn.Dropout(0.5),
# 标签类别数是10
nin_block(384, 10, kernel_size=3, strides=1, padding=1),
# nn.AdaptiveAvgPool2d(output_size)
nn.AdaptiveAvgPool2d((1, 1)),
# 将四维的输出转成二维的输出,其形状为(批量大小, 10)
nn.Flatten())
X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape:\t', X.shape)
lr,num_epochs,batch_size=0.1,10,128
train_iter,tese_iter = d2l.load_data_fashion_mnist(batch_size,resize=224)
d2l.train_ch6(net,train_iter,test_iter,num_epochs,lr,d2l.try_gpu())
本文探讨了1*1卷积层如何在深度学习中起到全连接层的效果,深入理解其在神经网络中的作用。
1014

被折叠的 条评论
为什么被折叠?



