1086 Tree Traversals Again (25 分)
An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop(); pop(); push(4); pop(); pop(); push(5); push(6); pop(); pop(). Then a unique binary tree (shown in Figure 1) can be generated from this sequence of operations. Your task is to give the postorder traversal sequence of this tree.
Figure 1
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤30) which is the total number of nodes in a tree (and hence the nodes are numbered from 1 to N). Then 2N lines follow, each describes a stack operation in the format: "Push X" where X is the index of the node being pushed onto the stack; or "Pop" meaning to pop one node from the stack.
Output Specification:
For each test case, print the postorder traversal sequence of the corresponding tree in one line. A solution is guaranteed to exist. All the numbers must be separated by exactly one space, and there must be no extra space at the end of the line.
Sample Input:
6
Push 1
Push 2
Push 3
Pop
Pop
Push 4
Pop
Pop
Push 5
Push 6
Pop
Pop
Sample Output:
3 4 2 6 5 1
题目大意:
用栈来代替递归中序遍历树。输出后序遍历序列。
思路:
有个很重要的性质,入栈顺序为前序序列,出栈顺序为中序序列。懂得这个性质则这道题就是paper tiger。
实质上就是在问如何前序 + 中序转后序。
前序 + 中序 转后序的详细分析:https://blog.youkuaiyun.com/qq_42306885/article/details/99021038
参考代码:
#include<stack>
#include<string>
#include<vector>
#include<iostream>
using namespace std;
vector<int> in, pre;
stack<int> st;
string s;
int n, temp, cnt;
void post(int root, int start, int end){
if(start > end) return;
int i = start;
while(i < end && in[i] != pre[root]) i++;
post(root + 1, start, i - 1);
post(root + i - start + 1, i + 1, end);
if(cnt == 0){
cnt++;
printf("%d", pre[root]);
}else printf(" %d", pre[root]);
}
int main(){
scanf("%d", &n);
for(int i = 0; i < 2 * n; ++i){
cin >> s;
if(s.size() == 4){
cin >> temp;
st.push(temp);
pre.push_back(temp);
}else{
in.push_back(st.top());
st.pop();
}
}
post(0, 0, n - 1);
return 0;
}