import numpy as np
import matplotlib.pyplot as plt
from filterpy.kalman import KalmanFilter
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
def moving_average(noisy_measurement, window_size):
return np.convolve(noisy_measurement, np.ones(window_size)/window_size, mode='valid')
def sliding_window_median(data, window_size):
medians = []
for i in range(len(data) - window_size + 1):
window = data[i:i+window_size]
median = np.median(window)
medians.append(median)
return medians
data = np.loadtxt('/home/local/EUROPRO/guoliang.wang/Downloads/ufd_median/苏州机器/CTM 探索/mnt/udisk/map/ufd_data.txt')
noisy_measurement = data[:, 0]
th_voule = data[:,1]
window_size = 32
median_filtered_values = sliding_window_median(noisy_measurement, window_size)
moving_avg_values = moving_average(noisy_measurement, window_size)
median_avg_value = moving_average(median_filtered_values, window_size)
avg_median = sliding_window_median(moving_avg_values, window_size)
time_series = np.arange(len(median_filtered_values))
kf = KalmanFilter(dim_x=2, dim_z=1)
kf.F = np.array([[1, 1], [0, 1]])
kf.H = np.array([[1, 0]])
kf.Q *= 0.01
kf.R = 0.1
kf.x = np.array([0, 0])
kf.P *= 1
filtered_state_means = []
for measurement in median_filtered_values:
kf.predict()
kf.update(measurement)
filtered_state_means.append(kf.x[0])
x = np.arange(len(noisy_measurement))
plt.figure(1)
plt.subplot(2,3,1)
plt.scatter(x,noisy_measurement, label='真实位置', marker='.', color='red')
plt.plot(th_voule)
plt.title('test_raw_data')
plt.grid(True)
plt.subplot(2,3,2)
plt.scatter(time_series, filtered_state_means, label='滤波后的状态', marker='.', color='blue')
plt.title('median_kalman')
plt.plot(th_voule)
plt.legend()
plt.grid(True)
x = np.arange(len(moving_avg_values))
plt.subplot(2,3,3)
plt.scatter(x,moving_avg_values, label='真实位置', marker='.', color='green')
plt.title('avg')
plt.grid(True)
plt.plot(th_voule)
x = np.arange(len(median_filtered_values))
plt.subplot(2,3,4)
plt.scatter(x,median_filtered_values, label='真实位置', marker='.', color='black')
plt.title('median')
plt.grid(True)
plt.plot(th_voule)
x = np.arange(len(median_avg_value))
plt.subplot(2,3,5)
plt.scatter(x,median_avg_value, label='真实位置', marker='.', color='black')
plt.title('median_avg')
plt.grid(True)
plt.plot(th_voule)
plt.subplot(2,3,6)
plt.scatter(x,avg_median, label='真实位置', marker='.', color='black')
plt.title('avg_med')
plt.grid(True)
plt.plot(th_voule)
plt.suptitle('17# BJ 1st Floor', fontsize=16)
plt.show()