

class Model_test(nn.Module):
def __init__(self):
super(Model_test, self).__init__()
self.conv1 = Conv2d(3, 32,5,padding=2)
self.maxpool1 = MaxPool2d(2)
self.conv2 = Conv2d(32, 32,5,padding=2)
self.maxpool2 = MaxPool2d(2)
self.conv3 = Conv2d(32, 64,5,padding=2)
self.maxpool3 = MaxPool2d(2)
self.flatten = Flatten()
self.liear1 = Linear(1024, 64)
self.liear2 = Linear(64, 10)
self.model1 = Sequential(
Conv2d(3, 32,5,padding=2),
MaxPool2d(2),
Conv2d(32, 32,5,padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10))
def forward(self, x):
x = self.conv1(x)
x = self.maxpool1 (x)
x = self.conv2(x)
x = self.maxpool2 (x)
x = self.conv3(x)
x = self.flatten(x)
x = self.liear1(x)
x = self.liear2(x)
x = self.model1(x)
return x
model_test = Module_test()
input = torch.ones(64,3,32,32)
output = model_test(input)
writer = SummaryWriter("logs_Sequential")
writer.add_graph(model_test, input)
writer.close()