题目描述
1.两数之和
给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标。
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素不能使用两遍。
示例:
给定 nums = [2, 7, 11, 15], target = 9
因为 nums[0] + nums[1] = 2 + 7 = 9
所以返回 [0, 1]
题解
哈希表
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
unordered_map<int, int> hashtable;
for(int i =0; i < nums.size(); i++){
auto it = hashtable.find(target - nums[i]);//如果key存在,则find返回key对应的迭代器,如果key不存在,则find返回unordered_map::end。
if(it != hashtable.end()){
return {it->second, i};//迭代器it.first会得到key,it.second会得到value。
}
hashtable[nums[i]] = i;//反过来放入map中,用来获取结果下标
}
return {};
}
};
复杂度分析
- 时间复杂度:O(N),其中 N 是数组中的元素数量。对于每一个元素 x,我们可以 O(1) 地寻找 target - x。
- 空间复杂度:O(N),其中 N 是数组中的元素数量。主要为哈希表的开销。
参考
题目描述
15. 三数之和(中等)
给你一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?请你找出所有满足条件且不重复的三元组。
注意:答案中不可以包含重复的三元组。
示例:
给定数组 nums = [-1, 0, 1, 2, -1, -4],
满足要求的三元组集合为:
[
[-1, 0, 1],
[-1, -1, 2]
]
题解
双指针
参考15. 三数之和:【哈希法】【双指针法】详解
-
首先将数组排序,然后有一层for循环,i从下表0的地方开始,同时定一个下表left 定义在i+1的位置上,定义下表right 在数组结尾的位置上。
-
在数组中找到 abc 使得a + b +c =0,其中 a = nums[i] b = nums[left] c = nums[right]。
-
如果 nums[i] + nums[left] + nums[right] > 0, 此时 right 应该向左移动,这样才能让三数之和小一些。
-
如果 nums[i] + nums[left] + nums[right] < 0, 此时 left 应该向右移动,才能让三数之和大一些。
-
直到left与right相遇为止。
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> result;
sort(nums.begin(), nums.end());
// 找出a + b + c = 0
// a = nums[i], b = nums[left], c = nums[right]
for (int i = 0; i < nums.size(); i++) {
// 排序之后如果第一个元素已经大于零,那么无论如何组合都不可能凑成三元组,直接返回结果就可以了
if (nums[i] > 0) {
return result;
}
// 错误去重方法,将会漏掉-1,-1,2 这种情况
/*
if (nums[i] == nums[i + 1]) {
continue;
}
*/
// 正确去重方法
if (i > 0 && nums[i] == nums[i - 1]) {
continue;
}
int left = i + 1;
int right = nums.size() - 1;
while (right > left) {
// 去重复逻辑如果放在这里,0,0,0 的情况,可能直接导致 right<=left 了,从而漏掉了 0,0,0 这种三元组
/*
while (right > left && nums[right] == nums[right - 1]) right--;
while (right > left && nums[left] == nums[left + 1]) left++;
*/
if (nums[i] + nums[left] + nums[right] > 0) {
right--;
} else if (nums[i] + nums[left] + nums[right] < 0) {
left++;
} else {
result.push_back(vector<int>{nums[i], nums[left], nums[right]});
// 去重逻辑应该放在找到一个三元组之后 先找到满足条件的记录下来,再进行去重
while (right > left && nums[right] == nums[right - 1]) right--;
while (right > left && nums[left] == nums[left + 1]) left++;
// 找到答案时,双指针同时收缩
right--;
left++;
}
}
}
return result;
}
};
复杂度分析
时间复杂度:O(N2),其中 N 是数组nums 的长度。
空间复杂度:O(logN)。我们忽略存储答案的空间,额外的排序的空间复杂度为O(logN)。然而我们修改了输入的数组nums,在实际情况下不一定允许,因此也可以看成使用了一个额外的数组存储了nums 的副本并进行排序,空间复杂度为 O(N)。
参考
15. 三数之和:【哈希法】【双指针法】详解
哈希表:总结篇!(每逢总结必经典)
三数之和
题目描述
18.四数之和
给定一个包含 n 个整数的数组 nums 和一个目标值 target,判断 nums 中是否存在四个元素 a,b,c 和 d ,使得 a + b + c + d 的值与 target 相等?找出所有满足条件且不重复的四元组。
注意:
答案中不可以包含重复的四元组。
题解
排序+双指针
class Solution {
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
vector<vector<int>> result;
sort(nums.begin(), nums.end());
for (int k = 0; k < nums.size(); k++) {
if (k > 0 && nums[k] == nums[k - 1]) {
continue;
}
for (int i = k + 1; i < nums.size(); i++) {
// 正确去重方法
if (i > k + 1 && nums[i] == nums[i - 1]) {
continue;
}
int left = i + 1;
int right = nums.size() - 1;
while (right > left) {
if (nums[k] + nums[i] + nums[left] + nums[right] > target) {
right--;
} else if (nums[k] + nums[i] + nums[left] + nums[right] < target) {
left++;
} else {
result.push_back(vector<int>{nums[k], nums[i], nums[left], nums[right]});
// 去重逻辑应该放在找到一个四元组之后
while (right > left && nums[right] == nums[right - 1]) right--;
while (right > left && nums[left] == nums[left + 1]) left++;
// 找到答案时,双指针同时收缩
right--;
left++;
}
}
}
}
return result;
}
};
官方剪枝操作
class Solution {
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
vector<vector<int>> quadruplets;
if (nums.size() < 4) {
return quadruplets;
}
sort(nums.begin(), nums.end());
int length = nums.size();
for (int i = 0; i < length - 3; i++) {
if (i > 0 && nums[i] == nums[i - 1]) {
continue;
}
if (nums[i] + nums[i + 1] + nums[i + 2] + nums[i + 3] > target) {
break;
}
if (nums[i] + nums[length - 3] + nums[length - 2] + nums[length - 1] < target) {
continue;
}
for (int j = i + 1; j < length - 2; j++) {
if (j > i + 1 && nums[j] == nums[j - 1]) {
continue;
}
if (nums[i] + nums[j] + nums[j + 1] + nums[j + 2] > target) {
break;
}
if (nums[i] + nums[j] + nums[length - 2] + nums[length - 1] < target) {
continue;
}
int left = j + 1, right = length - 1;
while (left < right) {
int sum = nums[i] + nums[j] + nums[left] + nums[right];
if (sum == target) {
quadruplets.push_back({nums[i], nums[j], nums[left], nums[right]});
while (left < right && nums[left] == nums[left + 1]) {
left++;
}
left++;
while (left < right && nums[right] == nums[right - 1]) {
right--;
}
right--;
} else if (sum < target) {
left++;
} else {
right--;
}
}
}
}
return quadruplets;
}
};