【一键函数】单细胞marker基因平均表达量热图函数

这是一个集成的函数,很多小伙伴被一些美图”迷了眼“,需要这样、那样的形式。单独做又很麻烦,且容易出错。要求既要这样展示,又要那样展示。所以我们直接做了一个集成的函数,完成一些美丽的可视化,尽力满足需求。这里要展示的单细胞marker基因平均表达量热图,按理来说有很多教程,可是有些小伙伴在热图注释、顺序调整、热图美化上面晕头转向,所以我们熬点夜解决这个问题。

[图片上传中...(image-96eed5-1734509619995)]

[图片上传中...(image-96eed5-1734509619995)]


参考:
【一键函数】单细胞marker基因平均表达量热图函数_哔哩哔哩_bilibili


ks_Singcellmean_heatmap(object = sce_cca,
                        marker_cluster = df_markers,
                        group.by = "celltype",
                        cellOrder = c("Myonuclei","NPCs","SMC","Tenocytes",
                                      "Adipocytes","Endothelial","Macrophages",
                                      "Mesenchymal","MuSCs","Myoblasts"),
                        cell_cols = c("#edc951","#8AAD05","#cc2a36","#4f372d","#00a0b0","#7A989A",
                                      "#849271","#CF9546","#C67052","#C1AE8D"),
                        text_size=9,
                        gene_anno = F)

image.png

image.png


ks_Singcellmean_heatmap(object = sce_cca,
                        marker_cluster = df_markers,
                        group.by = "celltype",
                        cellOrder = c("Myonuclei","NPCs","SMC","Tenocytes",
                                      "Adipocytes","Endothelial","Macrophages",
                                      "Mesenchymal","MuSCs","Myoblasts"),
                        cell_cols = c("#edc951","#8AAD05","#cc2a36","#4f372d","#00a0b0","#7A989A",
                                      "#849271","#CF9546","#C67052","#C1AE8D"),
                        text_size=9,
                        gene_anno = T)

image.png

image.png


ks_Singcellmean_heatmap(object = sce_cca,
                        marker_cluster = df_markers,
                        group.by = "celltype",
                        cellOrder = c("Myonuclei","NPCs","SMC","Tenocytes",
                                      "Adipocytes","Endothelial","Macrophages",
                                      "Mesenchymal","MuSCs","Myoblasts"),
                        cell_cols = c("#edc951","#8AAD05","#cc2a36","#4f372d","#00a0b0","#7A989A",
                                      "#849271","#CF9546","#C67052","#C1AE8D"),
                        text_size=9,
                        direction="vertical",
                        gene_anno=F)

image.png

image.png

ks_Singcellmean_heatmap(object = sce_cca,
                        marker_cluster = df_markers,
                        group.by = "celltype",
                        cellOrder = c("Myonuclei","NPCs","SMC","Tenocytes",
                                      "Adipocytes","Endothelial","Macrophages",
                                      "Mesenchymal","MuSCs","Myoblasts"),
                        cell_cols = c("#edc951","#8AAD05","#cc2a36","#4f372d","#00a0b0","#7A989A",
                                      "#849271","#CF9546","#C67052","#C1AE8D"),
                        text_size=9,
                        direction="vertical",
                        gene_anno=T)

image.png

image.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值