代码+图解
代码:
import numpy as np
#sigmoid激活函数
def sigmoid(x):
return 1 / (1 + np.exp(-x))
#初始化
def init_network():
network = {}
network['W1'] = np.array([[0.1, 0.3, 0.5], [0.2, 0.4, 0.6]])
network['b1'] = np.array([0.1, 0.3, 0.5])
network['W2'] = np.array([[0.1, 0.4], [0.2, 0.5], [0.3, 0.6]])
network['b2'] = np.array([0.1, 0.2])
network['W3'] = np.array([[0.1, 0.3], [0.2, 0.4]])
network['b3'] = np.array([0.1, 0.2])
return network
# 定义了identity_function()函数,作为输出层的激活函数
#恒等函数将输入原样输出。
def identity_function(x):
return x
# softmax函数——恒等函数即σ
def softmax(a):
exp_a = np.exp(a)
sum_exp_a = np.sum(exp_a)
y = exp_a / sum_exp_a
return y
#传播
def forward(network, x):
W1, W2, W3 = network['W1'], network['W2'], network['W3']
b1, b2, b3 = network['b1&