Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).
Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.
Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.
InputSome cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.
Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.
Line 1: Three space-separated integers: N, ML, and MD.
Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.
Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.
OutputLines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.
Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.
Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.
Sample Input4 2 1 1 3 10 2 4 20 2 3 3Sample Output
27Hint
Explanation of the sample:
There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.
The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.
There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.
The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.
题目大意:n头牛按顺序站,可以重合,给出两头牛之间的最长距离和最短距离,求1到n的最大距离;
思路:这道题运用 差分约束
nj-ni<=D;
nj-ni>=d 可以转换成 ni-nj<=-d;
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<queue>
#include<math.h>
#include<stack>
#include<ctype.h>
#include<stdlib.h>
#include<map>
#define inf 0x3f3f3f3f
#define ll long long
using namespace std;
int f[1005],dis[1005],mark[1005],fu[1005];
int m,ml,md;
struct p
{
int v,w,n;
}q[100005];
int spaf()
{
memset(fu,0,sizeof(fu));
for(int i=0;i<=m;i++)
{
dis[i]=inf;
mark[i]=0;
}
queue<int>que;
que.push(1);
dis[1]=0;
while(!que.empty())
{
int u=que.front();
mark[u]=0;
que.pop();
for(int i=f[u];i!=-1;i=q[i].n)
{
int v=q[i].v;
if(dis[v]>dis[u]+q[i].w)
{
dis[v]=dis[u]+q[i].w;
if(mark[v]==0)
{
mark[v]=1;
fu[v]++;
if(fu[v]>m)
return -1;
que.push(v);
}
}
}
}
if(dis[m]==inf)
return -2;
else
return dis[m];
}
int main()
{
while(~scanf("%d %d %d",&m,&ml,&md))
{
memset(f,-1,sizeof(f));
int i,a,b,l,e=1;
for(i=0;i<ml;i++)
{
scanf("%d %d %d",&a,&b,&l);
q[e].v=b;
q[e].w=l;
q[e].n=f[a];
f[a]=e++;
}
for(i=0;i<md;i++)
{
scanf("%d %d %d",&a,&b,&l);
q[e].v=a;
q[e].w=-l;
q[e].n=f[b];
f[b]=e++;
}
printf("%d\n",spaf());
}
}