One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requiresTi (1 ≤ Ti ≤ 100) units of time to traverse.
Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.
Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?
4 8 2 1 2 4 1 3 2 1 4 7 2 1 1 2 3 5 3 1 2 3 4 4 4 2 3Sample Output
10
思路:起点不一样,终点一样,所以从终点开始找到每个农场的最短路,因为是从起点到终点,所有要把路径反向;两次dijkstra后,算出来回需要的最大值;
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define inf 0x3f3f3f3f
#define ll long long
using namespace std;
int e[1005][1005];//用来储存正向路径
int ee[1005][1005];//用来储存反向路径
int mark[1005];
int dis[1005],ds[1005];
int main()
{
int n,m,x;
while(~scanf("%d %d %d",&n,&m,&x))//n个农场,m条路,到x农场开聚会
{
memset(e,0,sizeof(e));
memset(ee,0,sizeof(ee));
memset(dis,0,sizeof(dis));
memset(ds,0,sizeof(ds));
memset(mark,0,sizeof(mark));
int a,b,l,i,j;
for(i=1; i<=n; i++)
for(j=1; j<=n; j++)
if(i==j)
{
e[i][j]=0;
ee[i][j]=0;
}
else
{
e[i][j]=inf;
ee[i][j]=inf;
}
for(i=1; i<=m; i++)
{
scanf("%d %d %d",&a,&b,&l);
e[a][b]=min(e[a][b],l);
ee[b][a]=min(ee[b][a],l);
}
int pos=x,s=0;
for(i=1;i<=n;i++)
ds[i]=ee[pos][i];
mark[pos]=1;
for(i=1; i<n; i++)
{
int mini=inf;
for(j=1; j<=n; j++)
{
if(mark[j]==0&&ds[j]<mini)
{
pos=j;
mini=ds[j];
}
}
mark[pos]=1;
for(j=1; j<=n; j++)
{
if(mark[j]==0&&ds[j]>ds[pos]+ee[pos][j])
ds[j]=ee[pos][j]+ds[pos];
}
}
pos=x;
memset(mark,0,sizeof(mark));
mark[pos]=1;
for(i=1; i<=n; i++)
dis[i]=e[pos][i];
for(i=1; i<n; i++)
{
int mini=inf;
for(j=1; j<=n; j++)
{
if(mark[j]==0&&dis[j]<mini)
{
pos=j;
mini=dis[j];
}
}
mark[pos]=1;
for(j=1; j<=n; j++)
{
if(mark[j]==0&&dis[j]>e[pos][j]+dis[pos])
dis[j]=e[pos][j]+dis[pos];
}
}
for(i=1;i<=n;i++)
{
if(ds[i]+dis[i]>s)
s=dis[i]+ds[i];
}
printf("%d\n",s);
}
}