Silver Cow Party(最短路,好题)

本文探讨了牛群聚会场景下,通过SPFA算法解决从农场到聚会地点及返回的最短路径问题,并介绍了如何通过矩阵转置简化求解过程。详细解释了求两次最短路的方法,即先求农场X到其他农场的最短路,再求其他农场到X的最短路,最后计算所有牛往返所需时间的最大值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Silver Cow Party
Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u
Submit  Status  Practice  POJ 3268

Description

One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

Input

Line 1: Three space-separated integers, respectively:  NM, and  X 
Lines 2.. M+1: Line  i+1 describes road  i with three space-separated integers:  AiBi, and  Ti. The described road runs from farm  Ai to farm  Bi, requiring  Ti time units to traverse.

Output

Line 1: One integer: the maximum of time any one cow must walk.
 
求两次最短路,第一次求x到其余各点的最短路,第二次求各点到x的最短路。前者易于解决,直接应用spfa或其他最短路算法即可,后者要先将邻接矩阵转置再执行最短路算法。
为什么进行矩阵转置?比如u(u != x)到x的最短路为<u,v1>,<v1,v2>,<v2,v3>,...,<vi, x>,这条路径在转置邻接矩阵后变成<x,vi>,...,<v3,v2>,<v2, v1>,<v1,u>.于是乎,在转置邻接矩阵后,执行最短路算法求出x到u的最短路<x,vi>,...,<v3,v2>,<v2, v1>,<v1,u>即可得到转置前u到x的最短路。
 
 1     #include <iostream>
 2     #include <deque>
 3     #include <cstdio>
 4     #include <cstring>
 5     #include <algorithm>
 6 
 7     using namespace std;
 8 
 9     const int MAXV = 1002;
10     const int inf = 0x3f3f3f3f;
11     int t[MAXV][MAXV], d1[MAXV], d2[MAXV];
12     int que[MAXV<<1];
13     bool in[MAXV];
14     int n, m, x;
15 
16     void spfa(int * d)
17     {
18         memset(in, false, sizeof(in));
19         memset(d + 1, inf, sizeof(int) * n);//memset(d, inf, sizeof(d)) if wrong
20         d[x] = 0;
21         int tail = -1;
22         que[++tail] = x;
23         in[x] = true;
24         while(tail != -1){
25             int cur = que[tail];
26             tail--;
27             in[cur] = false;
28             for(int i = 1; i <= n; i++){
29                 if(d[cur] + t[cur][i] < d[i]){
30                     d[i] = d[cur] + t[cur][i];
31                     if(in[i] == false){
32                         que[++tail] = i;
33                         in[i] = true;
34                     }
35                 }
36             }
37         }
38     }
39 
40     void tran()
41     {
42         int i, j;
43         for(i = 1; i <= n; i++){
44             for(j = 1; j <= i; j++){
45                 swap(t[i][j], t[j][i]);
46             }
47         }
48     }
49 
50     int main()
51     {
52         while(scanf("%d %d %d", &n, &m, &x) != EOF){
53             memset(t, inf, sizeof(t));
54             while(m--){
55                 int a, b, c;
56                 scanf("%d %d %d", &a, &b, &c);
57                 t[a][b] = c;
58             }
59             spfa(d1);
60             tran();
61             spfa(d2);
62             int ans = -1;
63             for(int i = 1; i <= n; i++){
64                 if(d1[i] != inf && d2[i] != inf)
65                     ans = max(ans, d1[i] + d2[i]);
66             }
67             printf("%d\n", ans);
68         }
69         return 0;
70     }

 

 
 

转载于:https://www.cnblogs.com/cszlg/p/3311085.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值