Description
One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.
Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.
Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?
Input
Lines 2.. M+1: Line i+1 describes road i with three space-separated integers: Ai, Bi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.
Output
1 #include <iostream> 2 #include <deque> 3 #include <cstdio> 4 #include <cstring> 5 #include <algorithm> 6 7 using namespace std; 8 9 const int MAXV = 1002; 10 const int inf = 0x3f3f3f3f; 11 int t[MAXV][MAXV], d1[MAXV], d2[MAXV]; 12 int que[MAXV<<1]; 13 bool in[MAXV]; 14 int n, m, x; 15 16 void spfa(int * d) 17 { 18 memset(in, false, sizeof(in)); 19 memset(d + 1, inf, sizeof(int) * n);//memset(d, inf, sizeof(d)) if wrong 20 d[x] = 0; 21 int tail = -1; 22 que[++tail] = x; 23 in[x] = true; 24 while(tail != -1){ 25 int cur = que[tail]; 26 tail--; 27 in[cur] = false; 28 for(int i = 1; i <= n; i++){ 29 if(d[cur] + t[cur][i] < d[i]){ 30 d[i] = d[cur] + t[cur][i]; 31 if(in[i] == false){ 32 que[++tail] = i; 33 in[i] = true; 34 } 35 } 36 } 37 } 38 } 39 40 void tran() 41 { 42 int i, j; 43 for(i = 1; i <= n; i++){ 44 for(j = 1; j <= i; j++){ 45 swap(t[i][j], t[j][i]); 46 } 47 } 48 } 49 50 int main() 51 { 52 while(scanf("%d %d %d", &n, &m, &x) != EOF){ 53 memset(t, inf, sizeof(t)); 54 while(m--){ 55 int a, b, c; 56 scanf("%d %d %d", &a, &b, &c); 57 t[a][b] = c; 58 } 59 spfa(d1); 60 tran(); 61 spfa(d2); 62 int ans = -1; 63 for(int i = 1; i <= n; i++){ 64 if(d1[i] != inf && d2[i] != inf) 65 ans = max(ans, d1[i] + d2[i]); 66 } 67 printf("%d\n", ans); 68 } 69 return 0; 70 }
本文探讨了牛群聚会场景下,通过SPFA算法解决从农场到聚会地点及返回的最短路径问题,并介绍了如何通过矩阵转置简化求解过程。详细解释了求两次最短路的方法,即先求农场X到其他农场的最短路,再求其他农场到X的最短路,最后计算所有牛往返所需时间的最大值。
2179

被折叠的 条评论
为什么被折叠?



