【题解】poj3090 Visible Lattice Points(同洛谷P2158 [SDOI2008]仪仗队) 欧拉函数

该博客介绍了一道编程题(poj3090/SDOI2008仪仗队),讨论了在第一象限中从原点可视的格点问题。题目要求计算在0到N范围内,与原点连线不经过其他格点的点的数量。解题关键在于理解可见点的条件(x, y > 0, gcd(x, y) = 1)并使用欧拉函数在O(N)时间内求解。给出的样例展示了不同N值下的可视点数。" 102958376,7814940,"C++ STL 容器详解:string, vector, deque, stack, queue, list, set, multiset, map, multimap

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

Description

A lattice point (x, y) in the first quadrant (x and y are integers greater than or equal to 0), other than the origin, is visible from the origin if the line from (0, 0) to (x, y) does not pass through any other lattice point. For example, the point (4, 2) is not visible since the line from the origin passes through (2, 1). The figure below shows the points (x, y) with 0 ≤ x, y ≤ 5 with lines from the origin to the visible points.

这里写图片描述
Write a program which, given a value for the size, N, computes the number of visible points (x, y) with 0 ≤ x, y ≤ N.

Input

The first line of input contains a single integer C (1 ≤ C ≤ 1000) which is the number of datasets that follow.

Each dataset consists of a single line of input containing a single integer N (1 ≤ N ≤ 1000), which is the size.

Output

For each dataset, there is to be one line of output consisting of: the dataset number starting at 1, a single space, the size, a single space and the number of visible points for that size.

Sample Input

4
2
4
5
231

Sample Output

1 2 5
2 4 13
3 5 21
4 231 32549


显然易得,除(1,0)(0,1)(1,1)三个钉子外,一个钉子能被看见当且仅当1<=x,y<=N且gcd(x,y)=1,对于每个y,这样的x数量恰好是φ(y),本题答案就是3+2*∑φ(i)
可以利用线性筛的思想,在O(N)的时间内求出φ值

#include<cstdio>
const int N=1e3+10;
int phi[N],prime[N],p,n,c,v[N],sum[N],ca;
void euler()
{
	for(int i=2;i<=1000;i++)
	{
		if(!v[i])
		{
			v[i]=i;prime[p++]=i;
			phi[i]=i-1;
		}
		for(int j=0;j<p&&i*prime[j]<=1000;j++)
		{
			v[prime[j]*i]=prime[j];
			phi[i*prime[j]]=phi[i]*(i%prime[j]?prime[j]-1:prime[j]);
		} 
	}
}
int main()
{
	//freopen("in.txt","r",stdin);
    scanf("%d",&c);
    euler();
    for(int i=2;i<=1000;i++)sum[i]=sum[i-1]+phi[i];
    while(c--)
    {
    	scanf("%d",&n);
    	printf("%d %d %d\n",++ca,n,3+2*sum[n]);
	}
	return 0;
}

总结

把问题转化为欧拉函数求解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值