【向量数据库】向量数据库的构建和检索

1、使用 sentence-transformers 将文本编码为向量

安装 sentence-transformers

pip install -U sentence-transformers

在 huggingface 下载 all-MiniLM-L6-v2 模型权重(1_Pooling 是文件夹,里面包含一个 config.json 文件):

~$ ls
1_Pooling    config_sentence_transformers.json  model.safetensors  sentence_bert_config.json  tokenizer_config.json  train_script.py
config.json  data_config.json                   modules.json       special_tokens_map.json    tokenizer.json         vocab.txt

运行下面的示例脚本,将一句话编码为一个向量:

from sentence_transformers import SentenceTransformer

model_path = "/hub/weights/all-MiniLM-L6-v2"
model = SentenceTransformer(model_path)
sentence = ['This framework generates embeddings for each input sentence']
embedding = model.encode(sentence)
print(len(embedding), len(embedding[0]))  # 1 384

2、使用SQuAD-explorer数据集构建向量数据库

请添加图片描述

下载 SQuAD-explorer 数据集,这个数据集分为 Training SetDev SetDev Set 更小更方便格式化预览数据集的结构,也更方便调试。

也可以使用其他的数据集,像第一节演示的那样,只需要是模型支持的语言的句子就可以编码成向量。

.json文件加载后的第一层是一个Python dict,包含两个key"version""data""data"对应的值是一个list,可以看一下这个list的长度:

import json

with open("dev-v2.0.json", "r") as f:
    data = json.load(f)

data = data["data"]
print(len(data)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风好衣轻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值