普通二分查找代码省略……
有下界left和上界right,计算mid时,left+right会超过int型的范围,使用
mid = left + (right - left)/2替代,避免溢出
计算根号2的近似值,f(x) = x^2;x在1-2之间递增,采用左闭右闭区间
1.求根号2的近似值
#include<stdio.h>
const double eps = 1e-5;
double f(double x){
return x*x;
}
double calsqrt(){
double left = 1,right = 2,mid;
while((right-left)>eps){
mid = (left+right)/2;
if(f(mid)>2){
right = mid;
} else{
left = mid;
}
}
return mid;
}
int main(){
double k = calsqrt();
printf("%.5f\n",k);
return 0;
}
2.快速幂
给定三个整数,a,b,m
a<10^9
b<10^18
1< m < 10^9
求a^b%m
1)递归写法
typedef long long LL;
LL binaryPow(LL a, LL b,LL m){
if(b==0) return 1;
if(b%2==1) return a * binaryPow(a,b-1,m);
else{
LL mul = binaryPow(a,b/2,m);
return mul * mul % m;
}
}
2)迭代写法
b转化为二进制写法,例如13 = 8+4+1 = 2^3 + 2^2 +2^0 = 1101(二进制)
先令ans = 1,kanb的二进制末尾位是否为一,为一则ans = ans * a;
再令a = a^2,并将b右移以为,再看末尾位是否为一,为一继续ans = ans *a
循环执行这一步骤(只要b大于0)
LL binaryPow1(LL a, LL b,LL m){
LL ans = 1;
while(b>0){
if(b & 1)
ans = ans * a % m;
a = a * a % m;
b >>= 1;
}
return ans;
}