前言:模型量化作为常用的模型小型化技术,在大语言模型、搜广推模型上取得了巨大的成功,但是在Diffusion Models为代表的视觉生成模型上尚处于探索阶段。在CVPR2023、ICLR 2023、ICML 2023、ICCV 2023上新上架了不少关于量化Diffusion Models的论文,这篇博客就一并总结相关的技术,希望能对读者们有所启发。
目录
1、【ICLR 2023】Analog Bits: Generating Discrete Data using Diffusion Models with Self-Conditioning
2、【CVPR 2023】Post-training Quantization on Diffusion Models
3、【CVPR 2023】Regularized Vector Quantization for Tokenized Image Synthesis
4、【ICCV 2023】Q-Diffusion: Quantizing Diffusion Models
5、【NeurIPS 2023】Q-DM: An Efficient Low-bit Quantized Diffusion Model
6、【NeurIPS 2023】PTQD: Accurate Post-Training Quantization for Diffusion Models
7、【NeurIPS 2023】Temporal Dynamic Quantization for Diffusion Models
8、【ICLR 2024】EfficientDM: Efficient Quantization-Aware Fine-Tuning of Low-Bit Diffusion Models