遗传算法与TSP问题

本文介绍了遗传算法在解决旅行商问题(TSP)中的应用,详细阐述了遗传算法的原理、流程,并展示了不同参数设置(如群体大小、交叉概率、变异概率和迭代次数)对结果的影响。通过分析,确定了最优参数配置,指出遗传算法在TSP问题上的优势和局限性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.TSP问题简介

旅行商问题,即TSP问题(Traveling Salesman Problem)又译为旅行推销员问题、货郎担问题,是数学领域中著名问题之一。假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。

2.原理

遗传算法(GeneticAlgorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,通过模拟自然进化过程搜索最优解。遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。

3.流程

遗传算法的基本运算过程如下:

  1. 初始化:设置进化代数计数器t=0、设置最大进化代数T、交叉概率、变异概率、随机生成M个个体作为初始种群P

  2. 个体评价:计算种群P中各个个体的适应度

  3. 选择运算:将选择算子作用于群体。以个体适应度为基础,选择最优个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代

  4. 交叉运算:在交叉概率的控制下,对群体中的个体两两进行交叉

  5. 变异运算:在变异概率的控制下,对群体中的个体两两进行变异,即对某一个体的基因进行随机调整

  6. 经过选择、交叉、变异运算之后得到下一代群体P1。

重复以上1-6,直到遗传代数为T,以进化过程中所得到的具有最大适应度个体作为最优解输出,终止计算。

4.代码

(1)交叉操作函数 cross.m

%交叉操作函数  cross.m
function [A,B]=cross(A,B)
L=length(A);
if L<10
    W=L;
elseif ((L/10)-floor(L/10))>=rand&&L>10
    W=ceil(L/10)+8;
else
    W=floor(L/10)+8;
end
%%W为需要交叉的位数
p=unidrnd(L-W+1);%随机产生一个交叉位置
%fprintf('p=%d ',p);%交叉位置
for i=1:W
    x=find(A==B(1,p+i-1));
    y=find(B==A(1,p+i-1));
    [A(1,p+i-1),B(1,p+i-1)]=exchange(A(1,p+i-1),B(1,p+i-1));
    [A(1,x),B(1,y)]=exchange(A(1,x),B(1,y));
end

end

(2)对调函数 exchange.m

%对调函数 exchange.m

function [x,y]=exchange(x,y)
temp=x;
x=y;
y=temp;
 
end

(3)适应度函数 fit.m

%适应度函数fit.m,每次迭代都要计算每个染色体在本种群内部的优先级别,类似归一化参数。越大约好!
function fitness=fit(len,m,maxlen,minlen)
fitness=len;
for i=1:length(len)
    fitness(i,1)=(1-(len(i,1)-minlen)/(maxlen-minlen+0.0001)).^m;
end

(4)主函数 main

%main
clear;
clc;
%%%%%%%%%%%%%%%输入参数%%%%%%%%
N=25;               %%城市的个数
M=100;               %%种群的个数
ITER=2000;               %%迭代次数
%C_old=C;
m=2;                %%适应值归一化淘汰加速指数
Pc=0.8;             %%交叉概率
Pmutation=0.05;       %%变异概率
%%生成城市的坐标
pos=randn(N,2);
%%生成城市之间距离矩阵
D=zeros(N,N);
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值