机器学习02

1,回归算法-线性回归分析
线性回归详解
2,线性回归实例

# coding: gbk
from sklearn.datasets import fetch_california_housing
from sklearn.linear_model import LinearRegression,SGDRegressor
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler


def mylinear():
    """
    线性回归直接预测波士顿房价
    :return:
    """
    # 获取数据
    lb = fetch_california_housing()
    # 分割数据集到训练集和测试集
    x_train, x_test, y_train, y_test = train_test_split(lb.data, lb.target, test_size=0.25)
    # 进行标准化处理(特征值和目标值都需要标准化)
    std_x = StandardScaler()

    x_train = std_x.fit_transform(x_train)
    x_test = std_x.transform(x_test)

    # 目标值
    std_y = StandardScaler()

    y_train = std_y.fit_transform(y_train.reshape(-1, 1))
    y_test = std_y.transform(y_test.reshape(-1, 1))

    # estimator预测
    # 正规方程求解方式预测结果
    lr = LinearRegression()

    lr.fit(x_train,y_train)
    print(lr.coef_)

    # 预测测试集房价
    y_predict = std_y.inverse_transform(lr.predict(x_test))

    print("测试集里面每个房子的预测价格:", y_predict)

    # 梯度下降求解方式预测结果
    sgd = SGDRegressor()

    sgd.fit(x_train, y_train)
    print(sgd.coef_)

    # 预测测试集房价
    y_predict = std_y.inverse_transform(sgd.predict(x_test.reshape))

    print("sgd测试集里面每个房子的预测价格:", y_predict)


    return None


if __name__ == "__main__":
    mylinear()

3,回归性能评估
均方误差MSE:
API: mean_squared_error
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
在这里插入图片描述

4,分类算法-逻辑回归
在这里插入图片描述1)模型的保存与加载

# 保存训练好的模型
    joblib.dump(lr,"B:/PycharmProjects/PythonProject/机器学习/model/test.pkl")
# 加载模型
    model = joblib.load("B:/PycharmProjects/PythonProject/机器学习/model/test.pkl")
    y_predict = std_y.inverse_transform(model.predict(x_test))

5,分类–逻辑回归实例
详解逻辑回归

# coding: gbk
import numpy as np
from sklearn.linear_model import LogisticRegression
import pandas as pd
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler


def logistic():
    """
    逻辑回归
    :return:
    """
    # 构造列标签名字
    column = ['Sample code number', 'Clump Thickness', 'Unidormity of Cell Size', 'Uniformity of Cell Shape',
              'Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclel', 'Bland Chromatin', 'Normal Nucleoli',
              'Mitoses', 'Class']

    # 读取数据
    data = pd.read_csv(
        "http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data",
        names=column)

    print(data)

    # 缺失值处理
    data = data.replace(to_replace='?', value=np.nan)
    data = data.dropna()

    # 进行数据的分割
    x_train, x_test, y_train, y_test = train_test_split(data[column[1:10]], data[column[10]], test_size=0.25)

    # j进行标准化处理
    std = StandardScaler()
    x_train = std.fit_transform(x_train)
    x_test - std.transform(x_test)

    # 逻辑回归的预测()
    lg = LogisticRegression(C=1.0)
    lg.fit(x_train, y_train)  # 进行训练,利用对数自然损值不断去求最小值,优化W值

    print(lg.coef_)  # 逻辑回归的权重参数
    y_predict = lg.predict(x_test)  # 获取预测值
    print("准确率:", lg.score(x_test, y_test))
    print("召回率:", classification_report(y_test, y_predict, labels=[2, 4], target_names=["良性", "恶性"]))

    return None


if __name__ == "__main__":
    logistic()

6,聚类算法k-means
详解k-means
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值