目录
一、大数据的特点:
一、大数据的特点:
1、大量(Volume)大数据的特征首先就体现为“大”,从先Map3时代,一个小小的MB级别的Map3就可以满足很多人的需求,然而随着时间的推移,存储单位从过去的GB到TB,乃至现在的PB、EB级别
2、高速(Velocity)大数据的产生非常迅速,主要通过互联网传输。大数据对处理速度有非常严格的要求,服务器中大量的资源都用于处理和计算数据,很多平台都需要做到实时分析。数据无时无刻不在产生,谁的速度更快,谁就有优势。
3、多样(Variety) 数据来源多如手机,电脑,可穿戴设备,智能家居。数据格式多例如网络日志、图片、音频、视频、地理位置信息等
4、低价值密度(Value)这也是大数据的核心特征。现实世界所产生的数据中,有价值的数据所占比例很小。大数据最大的价值在于通过从大量不相关的各种类型的数据中,挖掘出对未来趋势与模式预测分析有价值的数据,并通过机器学习方法、人工智能方法或数据挖掘方法深度分析,发现新规律和新知识,并运用于农业、金融、医疗等各个领域,从而最终达到改善社会治理、提高生产效率、推进科学研究的效果。
二、从Hadoop框架讨论大数据生态
1、概念
Hadoop是一个由Apache基金会所开发的分布式系统基础架构
主要用于解决:海量数据的存储和海量数据的分析计算问题。
2、优点
1)高可靠性:因为Hadoop假设计算元素和存储会出现故障,因为它维护多个工作数据副本,在出现故障时可以对失败的节点重新分布处理。
2)高扩展性:在集群间分配任务数据,可方便的扩展数以千计的节点。
3)高效性:在MapReduce的思想下,Hadoop是并行工作的,以加快任务处理速度。
4)高容错性:自动保存多份副本数据,并且能够自动将失败的任务重新分配。
3、组成
1)Hadoop HDFS:(hadoop distribute file system )一个高可靠、高吞吐量的分布式文件系统。
2)Hadoop MapReduce:一个分布式的离线并行计算框架。
3)Hadoop YARN:作业调度与集群资源管理的框架。
4)Hadoop Common:支持其他模块的工具模块(Configuration、RPC、序列化机制、日志操作)。
HDFS架构概述:
(1)NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间、副本数、文件权限),
以及每个文件的块列表和块所在的DataNode等。
(2)DataNode(dn):在本地文件系统中存储文件块数据,以及块数据的校验和。
(3)Secondary NameNode(2nn):用来监控HDFS状态的辅助后台程序,每隔一段时间获取HDFS元数据的快照。
YARN架构简述:
1) ResourceManager(rm):处理客户端请求、启动/监控ApplicationMaster、监控NodeManager、资源分配与调度;
2)NodeManager(nm):单个节点上的资源管理、处理来自ResourceManager的命令、处理来自ApplicationMaster的命令;
3)ApplicationMaster:数据切分、为应用程序申请资源,并分配给内部任务、任务监控与容错。
4)Container:对任务运行环境的抽象,封装了CPU、内存等多维资源以及环境变量、启动命令等任务运行相关的信息。
MapReduce架构简述:
MapReduce将计算过程分为两个阶段:Map(映射)和Reduce(归约)
1)Map阶段并行处理输入数据
2)Reduce阶段对Map结果进行汇总
三、大数据技术生态体系
四、推荐系统框架图