linear algebra ----- (AB)T = BTAT 证明

本文详细解析了矩阵乘法转置的性质,即(AB)T=BTAT,通过定义矩阵A和B的元素,解释了如何通过矩阵A和B的乘积C的转置CT来验证这一性质。文章深入探讨了矩阵转置的概念及其在数学证明中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given an m×nm\times nm×n-matrix AAA and an n×pn\times pn×p-matrix BBB. Prove that (AB)T=BTAT(AB)^T = B^TA^T(AB)T=BTAT.

Here is my attempt:

Write the matrices AAA and BBB as A=[aij]A = [a_{ij}]A=[aij] and B=[bij]B = [b_{ij}]B=[bij], meaning that their (i,j)\left(i,j\right)(i,j)-th entries are aija_{ij}aij and bijb_{ij}bij, respectively.

Let C=AB=[cij]C=AB=[c_{ij}]C=AB=[cij], where cij=∑k=1naikbkjc_{ij} = \sum_{k=1}^n a_{ik}b_{kj}cij=k=1naikbkj, the standard multiplication definition.

We want (AB)T=CT=[cji](AB)^T = C^T = [c_{ji}](AB)T=CT=[cji]. That is the element in position j,ij,ij,i is ∑k=1naikbkj\sum_{k=1}^n a_{ik}b_{kj}k=1naikbkj. For instance, if i=2,j=3i=2, j=3i=2,j=3, then the element in 2,32,32,3 of CCC is that sum, but the element in position 3,23,23,2 of the transpose is that sum.

I need to get the same value for the element in position 3,23,23,2 of the right side.

The transpose matrices are BT=[bji],AT=[aji]B^T=[b_{ji}], A^T=[a_{ji}]BT=[bji],AT=[aji]. They are size p×np \times np×n and n×mn \times mn×m. That is, they switch rows and columns.

Let D=BTAT=[dji]D = B^T A^T = [d_{ji}]D=BTAT=[dji]. I write the indices backwards because if I want the element in position 3,23,23,2, that is, i=2,j=3i=2, j=3i=2,j=3 just like on the other side.

I get dji=∑k=1nbjkakid_{ji} = \sum_{k=1}^n b_{jk}a_{ki}dji=k=1nbjkaki

dji=∑k=1nbkjaikd_{ji} = \sum_{k=1}^n b_{kj}a_{ik}dji=k=1nbkjaik, this is the multiplying the transposes of BBB and AAA

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值