nn.relu和F.rulu的区别

文章详细解析了PyTorch中nn.ReLU模块的源码实现,强调了在forward方法中使用F.relu函数的原因,以及何时选择nn.Module和nn.functional.relu的依据,涉及训练时模型保存的注意事项.

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先来看看nn.ReLU的源码,可以看到其实在forward中nn.relu是调用了F.relu函数的:

class ReLU(Module):
    r"""Applies the rectified linear unit function element-wise:

    :math:`\text{ReLU}(x) = (x)^+ = \max(0, x)`

    Args:
        inplace: can optionally do the operation in-place. Default: ``False``

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/ReLU.png

    Examples::

        >>> m = nn.ReLU()
        >>> input = torch.randn(2)
        >>> output = m(input)


      An implementation of CReLU - https://arxiv.org/abs/1603.05201

        >>> m = nn.ReLU()
        >>> input = torch.randn(2).unsqueeze(0)
        >>> output = torch.cat((m(input),m(-input)))
    """
    __constants__ = ['inplace']
    inplace: bool

    def __init__(self, inplace: bool = False):
        super(ReLU, self).__init__()
        self.inplace = inplace

    def forward(self, input: Tensor) -> Tensor:
        return F.relu(input, inplace=self.inplace)

    def extra_repr(self) -> str:
        inplace_str = 'inplace=True' if self.inplace else ''
        return inplace_str

nn.ReLU()创建一个nn.Module,这意味着你可以添加到nn.Sequential中。而nn.functional.relu只是对 relu 函数API的调用。一般来说,用模块还是简单的函数调用,取决于你的编码风格。
在PyTorch中,nn.X都有对应的函数版本F.X,但是并不是所有的F.X均可以用于forward或其它代码段中,因为当网络模型训练完毕存储model时,forward中的F.X函数中的参数是无法保存的。也就是说,在forward中,使用的F.X函数一般均没有状态参数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不是吧这都有重名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值