层和块
块(block)可以描述单个层、由多个层组成的组件或整个模型本身。 使用块进行抽象的一个好处是可以将一些块组合成更大的组件, 这一过程通常是递归的。多个层被组合成块,形成更大的模型:
#层
import torch
from torch import nn
from torch.nn import functional as F
#nn.Sequential 定义了一种特殊的Module
net = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
X = torch.rand(2, 20)
net(X)
自定义块
块的基本功能:
- 将输入数据作为其前向传播函数的参数。
- 通过前向传播函数来生成输出。请注意,输出的形状可能与输入的形状不同。例如,我们上面模型中的第一个全连接的层接收一个20维的输入,但是返回一个维度为256的输出。
- 计算其输出关于输入的梯度,可通过其反向传播函数进行访问。通常这是自动发生的。
- 存储和访问前向传播计算所需的参数。
- 根据需要初始化模型参数。
class MLP(nn.Module):
# 用模型参数声明层。这里,我们声明两个全连接的层
def __init__(self):
# 调用MLP的父类Module的构造函数来执行必要的初始化。
# 这样,在类实例化时也可以指定其他函数参数,例如模型参数params(稍后将介绍)
super().__init__()#继承nn.Module
self.hidden = nn.Linear(20, 256) # 隐藏层
self.out = nn.Linear(256, 10) # 输出层
# 定义模型的前向传播,即如何根据输入X返回所需的模型输出
def forward(self, X):
# 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。
return self.out(F.relu(self.hidden(X)))
#MLP类实例化时就会调用__init__函数初始化,输入参数就会进行输出,使用forward函数传播(可能在Module类中有调用)
net = MLP()
net(X)
顺序快
Sequential的设计是为了把其他模块串起来,为了构建比较简化的MySequential,只需要定义两个关键参数:
- 一种将块逐个追加到列表中的函数;
- 一种前向传播函数,用于将输入按追加块的顺序传递给块组成的“链条”。
class MySequential(nn.Module):
def __init__(self, *args):
super().__init__()
for idx, module in enumerate(args):
# 这里,module是Module子类的一个实例。我们把它保存在'Module'类的成员
# 变量_modules中。_module的类型是OrderedDict
self._modules[str(idx)] = module
def forward(self, X):
# OrderedDict保证了按照成员添加的顺序遍历它们
for block in self._modules.values():
X = block(X)
return X
__init__
函数将每个模块逐个添加到有序字典_modules
中。_modules
的主要优点是: 在模块的参数初始化过程中, 系统知道在_modules
字典中查找需要初始化参数的子块。
当MySequential
的前向传播函数被调用时, 每个添加的块都按照它们被添加的顺序执行。 现在可以使用我们的MySequential
类重新实现多层感知机。
net = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
net(X)
在正向传播函数中执行代码
在需要更强的灵活性时,我们需要定义自己的块,例如,我们可能希望在前向传播函数中执行Python的控制流。 此外,我们可能希望执行任意的数学运算, 而不是简单地依赖预定义的神经网络层。
到目前为止, 我们网络中的所有操作都对网络的激活值及网络的参数起作用。 然而,有时我们可能希望合并既不是上一层的结果也不是可更新参数的项, 我们称之为常数参数(constant parameter)。
例如,我们需要一个计算函数 f(x,w)=c⋅wTxf(x,w)=c\cdot w^Txf(x,w)=c⋅wTx的层, 其中𝑥是输入, 𝑤是参数, 𝑐是某个在优化过程中没有更新的指定常量。 因此我们实现了一个FixedHiddenMLP
类,如下所示:
class FixedHiddenMLP(nn.Module):
def __init__(self):
super().__init__()
# 不计算梯度的随机权重参数。因此其在训练期间保持不变
self.rand_weight = torch.rand((20, 20), requires_grad=False)#随机的常数参数,不参加训练
self.linear = nn.Linear(20, 20)
def forward(self, X):
X = self.linear(X)
# 使用创建的常量参数以