题目
思路
考虑以询问的点为直角点,枚举另外一点,二分另外一个原来的点。
考虑以原来的点为直角点,枚举询问的点,二分另外一个原来的点。
需要极角排序(用atan2的死了)
用不需要double 的叉积,>0为顺时针,<0为逆时针,=0在同一条直线上。
还需要计算一个点绕另一个点90°后的坐标。
关键的排序!
卡常。。cf跑得慢,hdu跑得快。
/* Author : Rshs
* Data : 2020-01-15-15.05
*/
#include<bits/stdc++.h>
using namespace std;
#define FI first
#define SE second
#define LL long long
#define LDB long double
#define MP make_pair
#define PII pair<int,int>
#define SZ(a) (int)a.size()
const LDB pai = acos(-1.0L);
const LDB eps = 1e-10;
const LL mod = 1e9 + 7;
const int MXN = 1e6 + 5;
struct no {
LL x, y;
};
no z[MXN];
LL cx, cy;
LL x[MXN], y[MXN];
LL ans[MXN];
inline int xiang(no &a) { // 分象限
if(a.x >= 0 && a.y >= 0) return 1;
if(a.x < 0 && a.y >= 0) return 2;
if(a.x < 0 && a.y < 0) return 3;
if(a.x >= 0 && a.y < 0) return 4;
return 0;
}
LL corss(no &a, no &b) {
return a.x * b.y - a.y * b.x;
}
bool operator<(const no &x, const no &y) { //自定义排序,先按象限排,再按叉积
no a = {x.x - cx, x.y - cy};//转化成向量
no b = {y.x - cx, y.y - cy};
int qx = xiang(a), qy = xiang(b);
if(qx != qy) return qx < qy;
return corss(a, b) > 0;
}
int main() {
int n, q, pos;
while(cin >> n >> q){
for(int i = 1; i <= n + q; i++) {
int sa, sb;
scanf("%d%d", &sa, &sb);
x[i] = sa, y[i] = sb;
ans[i]=0;
}
for(int i = n + 1; i <= n + q; i++) {
cx = x[i], cy = y[i];
pos = 0;
for(int j = 1; j <= n; j++) {
z[pos++] = no{x[j], y[j]};
}
sort(z, z + pos);
for(int j = 1; j <= n; j++) {
no aa = {x[i] + y[i] - y[j], y[i] - (x[i] - x[j])};//90oc
ans[i] += (LL)(upper_bound(z, z + pos, aa) - lower_bound(z, z + pos, aa));
}
}
for(int i = 1; i <= n; i++) {
cx = x[i], cy = y[i];
pos = 0;
for(int j = 1; j <= n; j++) {
if(i == j)continue;
z[pos++] = no{x[j], y[j]};
}
sort(z, z + pos);
for(int j = n + 1; j <= n + q; j++) {
no aa = {x[i] + y[i] - y[j], y[i] - (x[i] - x[j])};//90oc
no bb = {x[i] - (y[i] - y[j]), y[i] + (x[i] - x[j])};//另一方向
ans[j] += (LL)(upper_bound(z, z + pos, aa) - lower_bound(z, z + pos, aa));
ans[j] += (LL)(upper_bound(z, z + pos, bb) - lower_bound(z, z + pos, bb));
}
}
for(int i = n + 1; i <= n + q; i++) cout << ans[i] << '\n';
}
return 0;
}