题目链接
求的是在这个W*H的长方形中,每次有这样的一个操作,在某一行、列划一条细线,分割出几个矩形块,问的是最大的矩形块的面积。
一道线段树的题,这里我们需要开两个来做,分别存放横竖的连续性,因为横竖的连续性相互之间是不影响的,然后就是线段树连续的一道基本题了。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <limits>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#define lowbit(x) ( x&(-x) )
#define pi 3.141592653589793
#define e 2.718281828459045
#define INF 0x3f3f3f3f
#define HalF (l + r)>>1
#define lsn rt<<1
#define rsn rt<<1|1
#define Lson lsn, l, mid
#define Rson rsn, mid+1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define myself rt, l, r
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
const int maxN = 2e5 + 7;
int W, H, N;
struct node
{
int ls, rs, ms; bool flag;
node(int a=0, int b=0, int c=0, bool d = false):ls(a), rs(b), ms(c), flag(d) {}
}wt[maxN<<2], ht[maxN<<2];
void buildTree(node *tree, int rt, int l, int r)
{
tree[rt] = node(r - l + 1, r - l + 1, r - l + 1, false);
if(l == r) return;
int mid = HalF;
buildTree(tree, Lson);
buildTree(tree, Rson);
}
void pushup(node *tree, int rt, int l, int r)
{
int mid = HalF;
tree[rt] = node(tree[lsn].ls, tree[rsn].rs, max(tree[lsn].ms, tree[rsn].ms), tree[lsn].flag);
if(tree[rt].ls == mid - l + 1 && !tree[rsn].flag) tree[rt].ls += tree[rsn].ls;
if(tree[rt].rs == r - mid && !tree[rsn].flag) tree[rt].rs += tree[lsn].rs;
tree[rt].ms = max(tree[rt].ms, max(tree[rt].ls, tree[rt].rs));
if(!tree[rsn].flag) tree[rt].ms = max(tree[rt].ms, tree[lsn].rs + tree[rsn].ls);
}
void update(node *tree, int rt, int l, int r, int qx)
{
if(l == r) { tree[rt].flag = true; return; }
int mid = HalF;
if(qx <= mid) update(tree, Lson, qx);
else update(tree, Rson, qx);
pushup(tree, myself);
}
char op[3]; int pos;
int main()
{
scanf("%d%d%d", &W, &H, &N);
buildTree(wt, 1, 1, W); buildTree(ht, 1, 1, H);
while(N--)
{
scanf("%s%d", op, &pos); pos++;
if(op[0] == 'V') update(wt, 1, 1, W, pos);
else update(ht, 1, 1, H, pos);
printf("%lld\n", (ll)wt[1].ms * ht[1].ms);
}
return 0;
}